We present a methodology for defining and optimizing a general force field for classical molecular simulations, and we describe its use to derive the Open Force Field 1.0.0 smallmolecule force field, codenamed Parsley. Rather than using traditional atom typing, our approach is built on the SMIRKSnative Open Force Field (SMIRNOFF) parameter assignment formalism, which handles increases in the diversity and specificity of the force field definition without needlessly increasing the complexity of the specification. Parameters are optimized with the ForceBalance tool, based on reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These quantum reference data are computed and are maintained with QCArchive, an opensource and freely available distributed computing and database software ecosystem. In this initial application of the method, we present essentially a full optimization of all valence parameters and report tests of the resulting force field against compounds and data types outside the training set. These tests show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields, as is accuracy on binding free energies. We find that this initial Parsley force field affords accuracy similar to that of other general force fields when used to calculate relative binding free energies spanning 199 protein−ligand systems. Additionally, the resulting infrastructure allows us to rapidly optimize an entirely new force field with minimal human intervention.
The parameterization of torsional / dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields.Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms.To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values.However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses.In this paper we propose a systematic and versatile workflow called \textit{TorsionDrive} to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development.The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described.The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes. File list (2)download file view on ChemRxiv TorsionDrive_manuscript_submitted.pdf (3.57 MiB) download file view on ChemRxiv TorsionDrive_SI.zip (5.32 MiB)
In this work we investigate whether experimental surface tension measurements, which are less sensitive to quantum and self-polarization corrections, are able to replace the usual reliance on the heat of vaporization as experimental reference data for fitting force field models of molecular liquids. To test this hypothesis we develop the fitting protocol necessary to utilize surface tension measurements in the ForceBalance optimization procedure in order to determine revised parameters for both three-point and four-point water models, TIP3P-ST and TIP4P-ST. We find that the incorporation of surface tension in the fit results in a rigid three-point model that reproduces the correct temperature of maximum density of water for the first time, but also leads to over-structuring of the liquid and less accurate transport properties. The rigid four-point TIP4P-ST model is highly accurate for a broad range of thermodynamic and kinetic properties, with similar performance compared to recently developed fourpoint water models. The results show surface tension to be a useful fitting property in general, especially when self-polarization corrections or nuclear quantum corrections are not readily available for correcting the heat of vaporization as is the case for other molecular liquids.
Ab initio molecular dynamics is able to predict novel reaction mechanisms by directly observing the individual reaction events that occur in simulation trajectories. In this article, we describe an approach for detecting reaction events from simulation trajectories using a physically motivated model based on time series analysis of ab initio bond orders. We found that applying a threshold to the bond order was insufficient for accurate detection, whereas peak finding on the first time derivative resulted in significantly improved accuracy. The model is trained on a reference set of reaction events representing the ideal result given unlimited computing resources. Our study includes two model systems: a heptanylium carbocation that undergoes hydride shifts, and an unsaturated iron carbonyl cluster that features CO ligand migration and bridging behavior. The results indicate a high level of promise for this analysis approach to be used in mechanistic analysis of reactive AIMD simulations more generally.
<div>The parameterization of torsional / dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields.</div><div>Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms.</div><div>To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values.</div><div>However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses.</div><div>In this paper we propose a systematic and versatile workflow called \textit{TorsionDrive} to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development.</div><div>The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described.</div><div>The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.