The frequent traffic accidents lead to a large number of casualties and large related financial losses every year; this serious state is owed to several factors; among those, driving behavior is one of the most imperative subjects to discuss. Driving behaviors mainly include behavior characteristics such as car-following, lane change, and risky driving behavior such as distraction, fatigue, or aggressive driving, which are of great help to various tasks in traffic engineering. An accurate and reliable method of driving behavior recognition is of great significance and guidance for vehicle driving safety. In this paper, the vehicle multisensor information, vehicle CAN bus data acquisition system, and typical feature extraction methods are summarized at first. And then, several driving behavior recognition models based on machine learning and deep learning are reviewed. Through a detailed analysis of the features of random forests, support vector machines, convolutional neural networks, and recurrent neural networks used to build driving behavior recognition models, the following findings are obtained: the driving behavior model constructed by traditional machine learning model is relatively mature but it is greatly affected by feature extraction, data scale, and model structure, which affects the accuracy of the final driving behavior recognition. Deep learning model based on a neural network has achieved high accuracy in identifying driving behavior, and it may gradually become the mainstream of constructing the driving behavior model with the development of big data, artificial intelligence technology, and computer hardware. Finally, this paper points out some content that needs to be further explored, to provide reference and inspiration for scholars in this field to continue to study the driving behavior recognition model in depth.
Accurately and efficiently predicting the fuel consumption of vehicles is the key to improving their fuel economy. This paper provides a comprehensive review of data-driven fuel consumption prediction models. Firstly, by classifying and summarizing relevant data that affect fuel consumption, it was pointed out that commonly used data currently involve three aspects: vehicle performance, driving behavior, and driving environment. Then, from the model structure, the predictive energy and the characteristics of the traditional machine learning model (support vector machine, random forest), the neural network model (artificial neural network and deep neural network), and this paper point out that: (1) the prediction model of fuel consumption based on neural networks has a higher data processing ability, higher training speed, and stable prediction ability; (2) by combining the advantages of different models to build a hybrid model for fuel consumption prediction, the prediction accuracy of fuel consumption can be greatly improved; (3) when comparing the relevant indicts, both the neural network method and the hybrid model consistently exhibit a coefficient of determination above 0.90 and a root mean square error below 0.40. Finally, the summary and prospect analysis are given based on various models’ predictive performance and application status.
Driver identification is very important to realizing customized service for drivers and road traffic safety for electric vehicles and has become a research hotspot in the field of modern automobile development and intelligent transportation. This paper presents a comprehensive review of driver identification methods. The basic process of driver identification task is proposed as four steps, the advantages and disadvantages of different data sources for driver identification are analyzed, driver identification models are divided into three categories, and the characteristics and research progress of driver identification models are summarized, which can provide a reference for further research on driver identification. It is concluded that on-board sensor data in the natural driving state is objective and accurate and could be the main data source for driver identification. Emerging technologies such as big data, artificial intelligence, and the internet of things have contributed to building a deep learning hybrid model with high accuracy and robustness and representing an important gradual development trend of driver identification methods. Developing a driver identification method with high accuracy, real-time performance, and robustness is an important development goal in the future.
PurposeThe purpose of this paper is to present an adaptive binary-tree element subdivision method (BTSM) for the evaluation of nearly singular integrals in three-dimensional boundary element method, which can facilitate automatic and high-quality patch generation.Design/methodology/approachIn this method, the nearly singular element is split into two sub-elements. Each sub-element is then examined to determine if it is to be subdivided based on a specific subdivision criterion. The specific subdivision ensures that those sub-elements far from the source point are sparse. And then those sub-elements in close proximity to the source point are replaced by regular triangular elements.FindingsWith the proposed method, the sub-elements obtained are automatically refined as they approach the projection point, and they are “good” in shape and size for standard Gaussian quadrature. Thus, the proposed method can be used to evaluate nearly singular integrals accurately for cases of different element shapes and various locations of the source point.Originality/valueNumerical examples for surface elements with various relative locations of the source point are presented. The results demonstrate that the proposed method has much better accuracy and robustness than some other methods.
Battery states are very important for the safe and reliable use of new energy vehicles. The estimation of power battery states has become a research hotspot in the development of electric buses and transportation safety management. This paper summarizes the basic workflow of battery states estimation tasks, compares, and analyzes the advantages and disadvantages of three types of data sources for battery states estimation, summarizes the characteristics and research progress of the three main models used for estimating power battery states such as machine learning models, deep learning models, and hybrid models, and prospects the development trend of estimation methods. It can be concluded that there are many data sources used for battery states estimation, and the onboard sensor data under natural driving conditions has the characteristics of objectivity and authenticity, making it the main data source for accurate power battery states estimation; Artificial neural network promotes the rapid development of deep learning methods, and deep learning models are increasingly applied in power battery states estimation, demonstrating advantages in accuracy and robustness; Hybrid models estimate the states of power batteries more accurately and reliably by comprehensively utilizing the characteristics of different types of models, which is an important development trend of battery states estimation methods. Higher accuracy, real-time performance, and robustness are the development goals of power battery states estimation methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.