We conclude that visually triggered headache and visual change in patients with migraine is accompanied by spreading suppression of initial neuronal activation and increased occipital cortex oxygenation. We postulate that this spreading suppression may be associated with initial activation of a migraine attack, independent of whether there are associated aura symptoms. We further postulate that there may be an association between vasodilation accompanying the initial stage of suppression and the induction of headache.
Background and Purpose-Studies of cerebral activation of motor function after ischemic stroke may enhance our understanding of the underlying mechanisms of motor functional recovery, including the role of the noninfarcted hemisphere. Methods-Eight right-handed recovering hemiparetic or hemiplegic patients were studied using functional MRI. Results were evaluated for each patient to consider individual variability in original functional organization, neuroanatomy, infarct size and extent, treatment, age, and sex. The results were also pooled as a group for comparison with a control group of eight right-handed normal subjects. Results-In six of eight stroke patients, extended activation in ipsilateral sensorimotor cortex was observed during paretic hand movements. Bilateral activation of the primary sensorimotor cortex was recorded in three of these six patients; ipsilateral activation alone was recorded in the remaining three patients. Only two patients had mild synkinesia. Furthermore, in two male patients, the paretic hand movements activated extended areas of ipsilateral premotor and dorsolateral prefrontal cortex, when compared with normal subjects. In two patients with left frontal infarction, profound activation in the right supramarginal gyrus and in the right premotor cortex was observed during the ipsilateral paretic hand movements. Conclusions-Synkinesia alone cannot explain the extent of ipsilateral activation in primary sensorimotor cortex. The explanation offered for our findings is that preexisting uncrossed motor neural pathways may be accessed or recruited to compensate for damage to the crossed motor pathways after ischemic stroke. (Stroke. 1998;29:112-122.)
MR images often provide superior anatomic and functional information over CT images, but generally are not used alone without CT images for radiotherapy treatment planning and image guidance. This study aims to investigate the potential of probabilistic classification of voxels from multiple MRI contrasts to generate synthetic CT (“MRCT”) images. The method consists of (1) acquiring multiple MRI volumes: T1-weighted, T2-weighted, two echoes from a ultra-short TE (UTE) sequence, and calculated fat and water image volumes using a Dixon method, (2) classifying tissues using fuzzy c-means clustering with a spatial constraint, (3) assigning attenuation properties with weights based on the probability of individual tissue class being present in each voxel, and (4) generating a MRCT image volume from the sum of attenuation properties in each voxel. The capability of each MRI contrast to differentiate tissues of interest was investigated based on a retrospective analysis of ten patients. For one prospective patient, the correlation of skull intensities between CT and MR was investigated, the discriminatory power of MRI in separating air from bone was evaluated, and the generated MRCT image volume was qualitatively evaluated. Our analyses showed that one MRI volume was not sufficient to separate all tissue types, and T2-weighted images was more sensitive to bone density variation compared to other MRI image types. The short echo UTE image showed significant improvement in contrasting air versus bone, but could not completely separate air from bone without false labeling. Generated MRCT and CT images showed similar contrast between bone and soft/solid tissues. These results demonstrate the potential of the presented method to generate synthetic CT images to support the workflow of Radiation Oncology treatment planning and image guidance.
Background Certain patterns can induce perceptual illusions/distortions and visual discomfort in most people, headaches in patients with migraine, and seizures in patients with photosensitive epilepsy. Visual stimuli are common triggers for migraine attacks, possibly because of a hyperexcitability of the visual cortex shown in patients with migraine. Precision ophthalmic tints (POTs) are claimed to reduce perceptual distortions and visual discomfort and to prevent migraine headaches in some patients. We report an fMRI visual cortical activation study designed to investigate neurological mechanisms for the beneficial effects of POTs in migraine. Methods Eleven migraineurs and 11 age- and sex-matched non-headache controls participated in the study using non-stressful and stressful striped patterns viewed through gray, POT, and control coloured lenses. Results For all lenses, controls and migraineurs did not differ in their response to the non-stressful patterns. When the migraineurs wore gray lenses or control coloured lenses, the stressful pattern resulted in activation that was greater than in the controls. There was also an absence of the characteristic low-pass spatial frequency (SF) tuning in extrastriate visual areas. When POTs were worn, however, both cortical activation and SF tuning were normalized. Both when observing the stressful pattern and under more typical viewing conditions, the POTs reduced visual discomfort more than either of the other two lenses. Conclusion The normalization of cortical activation and SF tuning in the migraineurs by POTs suggests a neurological basis for the therapeutic effect of these lenses in reducing visual cortical hyperactivation in migraine.
The hyperneuronal activity of the occipital cortex is consistent with general cortical hyperexcitability in migraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.