An electrically tunable metasurface is designed for radar cross-section (RCS) reduction application in this paper. It consists of 24 × 24 cells individually loaded with variable capacitors so that their phase profiles can be independently controlled by the bias voltage. Therefore, based on the diffusive scattering principle and reflect-array theory, we arrange the adaptive phase differences between adjacent basic elements and reconfigure the appropriate phase distribution determined by a genetic algorithm (GA) corresponding to the operation frequency. Thus, stable monostatic and bistatic RCS reduction with normal incidence can be realized over a wide band by independently tuning the capacitance of each loaded varactor. Simulation results verify that the bistatic RCS reduction can reach at least 10 dBSm within both 4.2-7.3 GHz and 9.3-11.3 GHz. Simultaneously, the monostatic RCS reduction reaches at least 17.5 dBSm and 14 dBSm within the above two bands, respectively. INDEX TERMS Metasurface, radar cross section, varactor tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.