Efficient Air Conditioning (A/C) system is the key to reducing energy consumption in building operation. In order to decrease the energy consumption in an A/C system, a method to calculate the optimal tube row number of a direct expansion (DX) cooling coil for minimizing the entropy generation in the DX cooling which functioned as evaporator in the A/C system was developed. The optimal tube row numbers were determined based on the entropy generation minimization (EGM) approach. Parametric studies were conducted to demonstrate the application of the analytical calculation method. Optimal tube row number for different air mass flow rates, inlet air temperatures and sensible cooling loads were investigated. It was found that the optimal tube row number of a DX cooling coil was in the range of 5 -9 under normal operating conditions. The optimal tube row number was less when the mass flow rate and inlet air temperature were increased. The tube row number increased when the sensible cooling load was increased. The exergy loss when using a non-optimal and optimal tube row numbers was compared to show the advantage of using the optimal tube row number. The decrease of exery loss ranged from around 24% to 70%. Therefore the new analytical method developed in this paper offers a good practice guide for the design of DX cooling coils for energy conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.