Dynamic and quasi-static tensile tests of 5083P-O aluminium alloy were carried out using RPL100 electronic creep/fatigue testing machine and the split Hopkinson tension bar, respectively. The dynamic constitutive relation of the material at high strain rates was studied, and the constitutive model in accordance with Cowper–Symonds form was established. At the same time, a method to describe the constitutive relation of material using the strain rate interpolation method which is included in LS-DYNA software was proposed. The advantages and accuracy of this method were verified by comparing the results of the finite element simulation with the fitting results of the Cowper-Symonds model. The influence of material strain rate effect on squeezing force, energy absorption and deformation mode of the squeezing energy-absorbing structure based on the constitutive models of 5083P-O were studied by means of finite element simulation. The results show that when the strain rate of the structure deformation is low, the material strain rate strengthening effect has little influence on the structure. However, with the increase of the strain rate, the strengthening effect of the material will improve the squeezing force and the energy absorption of the structure, and will also influence the deformation mode, that is, the decrease of the deformation with high strain rates while the increase of the deformation with low strain rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.