Recently, color generation in resonant nanostructures have been intensively studied. Despite of their exciting progresses, the structural colors are usually generated by the plasmonic resonances of metallic nanoparticles. Due to the inherent plasmon damping, such plasmonic nanostructures are usually hard to create very distinct color impressions. Here we utilize the concept of metasurfaces to produce all-dielectric, low-loss, and high-resolution structural colors. We have fabricated TiO metasurfaces with electron-beam lithography and a very simple lift-off process. The optical characterizations showed that the TiO metasurfaces with different unit sizes could generate high reflection peaks at designed wavelengths. The maximal reflectance was as high as 64% with full width at half-maximum (fwhm) around 30 nm. Consequently, distinct colors have been observed in bright field and the generated colors covered the entire visible spectral range. The detailed numerical analysis shows that the distinct colors were generated by the electric resonance and magnetic resonances in TiO metasurfaces. Based on the unique properties of magnetic resonances, distinct colors have been observed in bright field when the metasurfaces were reduced to a 4 × 4 array, giving a spatial resolution around 16000 dpi. Considering the cost, stability, and CMOS-compatibility, this research will be important for the structural colors to reach real-world industrial applications.
Nanoprint-based color display using either extrinsic structural colors or intrinsic emission colors is a rapidly emerging research field for high-density information storage. Nevertheless, advanced applications, e. g., dynamic full-color display and secure information encryption, call for demanding requirements on in situ color change, nonvacuum operation, prompt response, and favorable reusability. By transplanting the concept of electrical/chemical doping in the semiconductor industry, we demonstrate an in situ reversible color nanoprinting paradigm via photon doping, triggered by the interplay of structural colors and photon emission of lead halide perovskite gratings. It solves the aforementioned challenges at one go. By controlling the pumping light, the synergy between interlaced mechanisms enables color tuning over a large range with a transition time on the nanosecond scale in a nonvacuum environment. Our design presents a promising realization of in situ dynamic color nanoprinting and will empower the advances in structural color and classified nanoprinting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.