A novel method for vibration suppression is proposed, adding a viscoelastic damping block to the root of the blade. The dynamical equation for a rotational viscoelastic damping block-blade (VE-blade) in a centrifugal force field and aerodynamic force field is established to calculate the dynamical natural frequency and responses of the VE-blade. Complex modulus model is applied to represent the constitutive law of viscoelastic material and shear force acting on the VE-blade formulates the effect of viscoelastic damping at the root interfaces. The dynamical equation of the system is established and the Galerkin method is used to discretize the partial differential equations to a 3-DOF system so as to compute the dynamic natural frequencies and responses of the VE-blade. Then the differential equations of motion with 3-DOF are numerically solved by using complex eigenvalue method. A cantilever VE-blade is simplified according to testing the first three natural frequencies of the real blade to obtain geometric parameters of cantilever beam. The effects of various parameters including thickness, storage modulus, loss factor of viscoelastic damping block, and rotating speed on natural frequency and modal damping ratio of VE-blade are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.