In this paper, the authors present a stress wave-based active sensing method to detect the crack in FRP-reinforced concrete beams. The embedded smart aggregates (SAs), which utilize Lead Zirconate Titanate (PZT) as transducers, are employed in this research to generate and sense the stress wave. Three specimens are involved in the experimental program and each is made of concrete, longitudinal distributed reinforcement, steel stirrups, main bar (FRP bar or steel bar), and four SAs. A pair of SAs installed on the lower part of the main bar and the other pair of SAs mounted on the upper part of main bar are utilized to monitor the crack occurrence and development in the three test specimens. The signals received by the SA sensors are analyzed in both time domain and frequency domain. The wavelet packet energy is used to extract damage features. The applied load–vertical displacement curves of mid-span in the specimen are obtained. Experimental results show the test specimens experience crushing failure when the concrete compression exceeds its compressive strength. Increasing the contact area between FRP bar and concrete can effectively improve the cracking load of the FRP-reinforced concrete beam and reduce the cracking speed and depth of FRP-reinforced concrete beam; on the other hand, increasing the elastic modulus of the main bar can slow down the crack development of concrete on the upper side of the main bar and decrease the displacement of reinforced concrete beam during the loading test process. The research results show that the developed piezoceramic-based active sensing method, though low-cost, can monitor the crack-induced damage and estimate the process of damage degree in real-time, and has potentials to provide an early warning of crack occurrence and development for FRP-reinforced concrete beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.