Constantly decreasing costs of high-throughput profiling on many molecular levels generate vast amounts of multi-omics data. Studying one biomedical question on two or more omic levels provides deeper insights into underlying molecular processes or disease pathophysiology. For the majority of multi-omics data projects, the data analysis is performed level-wise, followed by a combined interpretation of results. Hence the full potential of integrated data analysis is not leveraged yet, presumably due to the complexity of the data and the lacking toolsets. We propose a versatile approach, to perform a multi-level fully integrated analysis: The Knowledge guIded Multi-Omics Network inference approach, KiMONo (https://github.com/cellmapslab/kimono). KiMONo performs network inference by using statistical models for combining omics measurements coupled to a powerful knowledge-guided strategy exploiting prior information from existing biological sources. Within the resulting multimodal network, nodes represent features of all input types e.g. variants and genes while edges refer to knowledge-supported and statistically derived associations. In a comprehensive evaluation, we show that our method is robust to noise and exemplify the general applicability to the full spectrum of multi-omics data, demonstrating that KiMONo is a powerful approach towards leveraging the full potential of data sets for detecting biomarker candidates.
The use of ultrasounds has been implemented to increase yeast viability, de-foaming, and cavitation in foods and beverages. However, the application of low frequency audible sound to decrease bubble size and improve foamability has not been explored. In this study, three treatments using India Pale Ale beers were tested, which include (1) a control, (2) the application of audible sound during fermentation, and (3) the application of audible sound during natural carbonation. Five different audible frequencies (20 Hz, 30 Hz, 45 Hz, 55 Hz, and 75 Hz) were applied daily for one minute each (starting from the lowest frequency) during fermentation (11 days, treatment 2) and carbonation (22 days, treatment 3). Samples were measured in triplicates using the RoboBEER to assess color and foam-related parameters. A trained panel (n = 10) evaluated the intensity of sensory descriptors. Results showed that samples with sonication treatment had significant differences in the number of small bubbles, alcohol, and viscosity compared to the control. Furthermore, except for foam texture, foam height, and viscosity, there were non-significant differences in the intensity of any sensory descriptor, according to the rating from the trained sensory panel. The use of soundwaves is a potential treatment for brewing to improve beer quality by increasing the number of small bubbles and foamability without disrupting yeast or modifying the aroma and flavor profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.