Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO) and ceria-zirconia (CeZrO) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a single enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.
Chiral catalysts tolerating photochemical reactions are in great demand for the vast development of visible-lightinduced asymmetric synthesis.N ow,c hiral octahedral complexes based on earth-abundant metal and chiral N 4 ligands are reported. One well-defined chiral Co II -complex is shown to be an efficient catalyst in the visible-light-induced conjugated addition of enones by alkyl and acyl radicals,p roviding synthetically valued chiral ketones and 1,4-dicarbonyls in 47-> 99 %yields with up to 97:3 e.r.Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
Pochonicine, the first naturally occurring polyhydroxylated pyrrolizidine containing an acetamidomethyl group, which was isolated from Pochonia suchlasporia var. suchlasporia TAMA 87, together with its enantiomer and their C-1 and/or C-3 epimers, have been synthesized from the sugar-derived cyclic nitrones 9D and 9L, respectively. An in-depth NMR study showed that both the (1)H and (13)C NMR spectra of the synthetic pochonicines (1D and 1L) matched very well with those of natural pochonicine in D2O, which unequivocally determined the relative configuration of the natural product as 1D or 1L. In addition, comparison of the optical rotations of the synthetic pochonicines and that of the natural product, but more convincingly their glycosidase inhibition profiles, confirmed the absolute configuration of natural pochonicine as 1R,3S,5R,6R,7S,7aR. Thereby, the structure of natural pochonicine was unequivocally determined as (+)-(1R,3S,5R,6R,7S,7aR)-pochonicine (1D). Glycosidase inhibition experiments showed that natural pochonicine 1D and its epimers 2D, 3D, and 4D all are powerful inhibitors of hexosaminidases (five β-N-acetylglucosaminidases and two β-N-acetylgalactosaminidases) while their enantiomers 1L, 2L, 3L, and 4L are much weaker inhibitors of the same enzymes. (-)-3-epi-Pochonicine (2L) was found to be a potent and selective inhibitor of α-l-rhamnosidase. None of the compounds showed any inhibition of α-GalNAcase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.