The carotenoid isomerase gene (BoaCRTISO) of Chinese kale was targeted and edited using the CRISPR/Cas9 system in the present study. The results showed a high mutation rate (81.25%), and 13 crtiso mutants were obtained. Only two types of mutations, insertions and replacements, were found. Both the total and individual carotenoid and chlorophyll concentrations of the biallelic and homozygous mutants were reduced, and the total levels declined by 11.89–36.33%. The color of the biallelic and homozygous mutants changed from green to yellow, likely reflecting a reduction in the color-masking effect of chlorophyll on carotenoids. The expression levels of most carotenoid and chlorophyll biosynthesis-related genes, including CRTISO, were notably lower in the mutants than in the WT plants. In addition, the functional differences between members of this gene family were discussed. In summary, these findings indicate that CRISPR/Cas9 is a promising technique for the quality improvement of Chinese kale and other Brassica vegetables.
Chinese kale (Brassica oleracea var. alboglabra) has high nutritional value. This study investigated the contents of glucosinolates, antioxidants (chlorophylls, carotenoids, vitamin C, and total phenolics), and antioxidant capacity in five organs from six varieties of Chinese kale. The highest concentrations of individual and total glucosinolates were in the roots and inflorescences, respectively. The highest levels of antioxidants and antioxidant capacity were in inflorescences and leaves. Plant organs played a predominant role in glucosinolate and antioxidant accumulation. Glucoiberin, glucoraphanin, and glucobrassicin, the main anticarcinogenic glucosinolates, could be enhanced simultaneously because of their high positive correlations. The relationship between glucosinolates and antioxidant capacity indicated that glucobrassicin might contribute to the total antioxidant capacity. These results provide useful information related to consumption, breeding of functional varieties, and use of the non-edible organs of Chinese kale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.