Epileptic seizures are the manifestation of hypersynchronous and excessive neuronal excitation. While the glutamatergic and GABAergic neurons play major roles in shaping fast neuronal excitation/inhibition homeostasis, it is well illustrated that astrocytes profoundly regulate neuronal excitation by controlling glutamate, GABA, cannabinoids, adenosine and concentration of K+ around neurons. However, little is known whether microglia take part in the regulation of acute neuronal excitation and ongoing epileptic behaviors. We proposed that if microglia are innately ready to respond to epileptic overexcitation, depletion of microglia might alter neuronal excitability and severity of acute epileptic seizures. We found that microglia depletion by PLX3397, an inhibitor of CSF1R, exacerbates seizure severity and excitotoxicity-induced neuronal degeneration, indicating that microglia are rapidly responsive to the change of excitation/inhibition homeostasis and participate in the protection of neurons from overexcitation.
TRESK channel contributes to depolarizationinduced shunting inhibition and modulates epileptic seizuresGraphical abstract Highlights d A sustained seizure-like depolarization induces a transient shunting inhibition d This non-synaptic form of short-term plasticity contributes to seizure termination d TRESK, a subtype of K + channels, contributes to this shunting inhibition d Activating TRESK shortens seizure duration and prolongs postictal depression
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.