Introduction: Traditional Chinese medicine is an ancient system of wellness and health that has been used in almost all countries of the world, specially in Asia for thousands of years. Method: The growth, development, final yield and chemical compounds of medicinal plants can be negatively influenced by different kinds of biotic and abiotic stresses. Abiotic stress signals are chemical stress (Mineral salts, heavy metal, aerosols, gaseous toxins, pesticides, and pollutants), salinity (salt), temperature (Heat, cold), radiation (Ionisation radiation, light and UV), water (Flooding, drought) and mechanical stress (Submergence, wind, soil movement). Relevant literature has been obtained using the keywords “Traditional Chinese Medicine”, “Abiotic Stress”, “Biotic Stress”, “Ginseng”, “Ginger”, “Goji berry”, “Astragalus”, “Ginkgo”, “Artemisia annua L.”, “LC-MS”, “GC-MS”, and “NMR” in scientific information, namely “Web of Science”, “PubMed”, “SciFinder”, and “Elsevier”. Some of the plants’ secondary metabolites under different growth conditions are Camptothecin (Camptotheca acuminata), Capsaicin (Capsicum sp.), Rosmarinic acid (Salvia miltiorrhiza), Codeine (Papaver somniferum), Resveratrol (Grapes, groundnut), Artemisinin (Artemesia annua), Allicin (Allium sativum), Rohitukine (Dysoxylum binectariferum), Stevioside (Stevia rebaudiana), Andrographolide (Andrographis paniculata), Saikosaponins (Bupleurum chinense), Sennosides (Cassia augustifolia), Rutin (Dimorphandra mollis), Valepotriates (Valeria species), Indole alkaloids (Catharanthus roseous), and Furanocoumarins (Bituminaria bituminosa). Result: The aim of this article is a survey of active chemical compounds and metabolic changes of some of the most important medicinal plants in traditional Chinese medicine (TCM) in both abiotic and biotic stresses. Conclusion: Future research is needed to evaluate the effects of biotic and abiotic stresses on chemical compounds and active metabolites of medicinal plants specially traditional Chinese medicine, and more surveys on the roles of LC-MS, GC-MS and NMR techniques for a better understanding of chemical components of medicinal plants.
Cholesterol was first found in gallstones as an animal sterol; hence it is called cholesterol. Cholesterol oxidase is the chief enzyme in the process of cholesterol degradation. Its role is obtained by the coenzyme FAD, which catalyzes the isomerization and oxidation of cholesterol to produce cholesteric 4-ene-3-ketone and hydrogen peroxide at the same time. Recently, a great advance has been made in the discovery of the structure and function of cholesterol oxidase, and it has proven added value in clinical discovery, medical care, food and biopesticides development and other conditions. By recombinant DNA technology, we can insert the gene in the heterologous host. Heterologous expression (HE) is a successful methodology to produce enzymes for function studies and manufacturing applications, where Escherichia coli has been extensively used as a heterologous host because of its economical cultivation, rapid growth, and efficiency in offering exogenous genes. Heterologous expression of cholesterol oxidase has been considered for several microbial sources, such as Rhodococcus equi, Brevibacterium sp., Rhodococcus sp., Streptomyces coelicolor, Burkholderia cepacia ST-200, Chromobacterium, and Streptomyces spp. All related publications of numerous researchers and scholars were searched in ScienceDirect, Scopus, PubMed, and Google Scholar. In this article, the present situation and promotion of heterologous expression of cholesterol oxidase, the role of protease, and the perspective of its possible applications were reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.