The molecular mechanisms that link cell-cycle controls to the mitotic apparatus are poorly understood. A component of the Saccharomyces cerevisiae spindle, Ase1, was observed to undergo cell cycle-specific degradation mediated by the cyclosome, or anaphase promoting complex (APC). Ase1 was degraded when cells exited from mitosis and entered G1. Inappropriate expression of stable Ase1 during G1 produced a spindle defect that is sensed by the spindle assembly checkpoint. In addition, loss of ASE1 function destabilized telophase spindles, and expression of a nondegradable Ase1 mutant delayed spindle disassembly. APC-mediated proteolysis therefore appears to regulate both spindle assembly and disassembly.
Specificity of promoter utilization in bacterial RNA polymerases is imparted by a class of proteins referred to as sigma factors. Conserved region 2.3 of these proteins is thought to play a role in the strand separation process that occurs during the formation of an initiation-competent RNA polymerase-promoter complex. We have used a heterologous system consisting of Escherichia coli core RNA polymerase and Bacillus subtilis sigma A to probe the effects of amino acid substitutions in region 2.3. In agreement with previous work [Juang & Helmann (1994) J. Mol. Biol. 235, 1470-1488] we observe that several amino acid substitutions exacerbate the deleterious effect of low temperature on promoter-dependent initiation. On the other hand, no such enhanced cold sensitivity is found with double-stranded templates that contain short "bubbles" of single-stranded DNA, indicating that the DNA-melting defect imposed by these mutant sigma factors can be suppressed by the use of such bubble templates. These results support the involvement of region 2.3 in the strand separation process that accompanies open complex formation at promoters.
Bacillus subtilis RNA polymerase (RNAP) contains a catalytic core (beta beta' alpha 2; or E) associated with one of several sigma factors, which determine promoter recognition, and delta protein, which enhances promoter selectivity. We have shown previously that specific mutations in sigma A region 2.3, or addition of delta, decrease the ability of RNAP to melt the ilv-leu promoter. Here we extend these studies to a stable RNA promoter, PtmS, which controls transcription of seven tRNA genes. KMnO4 footprinting was used to visualize DNA melting at PtmS as a function of both temperature and the protein composition of the RNAP holoenzyme. We propose that the pathway leading to productive initiation includes several intermediates: a closed complex (RPc), a complex in which DNA melting has nucleated within the conserved TATA element (RPn), and an open complex in which DNA-melting extends to at least -4 (RPo1). RNAP reconstituted with either of two mutant sigma A proteins, Y189A and W192A, was defective for both the nucleation and propagation of the transcription bubble while a third sigma A mutant, W193A, allows normal nucleation of DNA-melting, but does not efficiently propagate the melted region downstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.