Highlights d 11,394 proteins are quantified in autopsy samples from 7 organs in 19 COVID-19 patients d Elevated expression of cathepsin L1 is detected in the COVID-19 lung tissue d Dysregulation of angiogenesis, coagulation, and fibrosis is detected in multiple organs d Systemic metabolic dysregulation is detected in multiple organs
1The COVID-19 pandemic is spreading globally with high disparity in the 2 susceptibility of the disease severity. Identification of the key underlying factors for 3 this disparity is highly warranted. Here we describe constructing a proteomic risk 4 score based on 20 blood proteomic biomarkers which predict the progression to 5 severe COVID-19. We demonstrate that in our own cohort of 990 individuals without 6 infection, this proteomic risk score is positively associated with proinflammatory 7 cytokines mainly among older, but not younger, individuals. We further discovered 8 that a core set of gut microbiota could accurately predict the above proteomic 9 biomarkers among 301 individuals using a machine learning model, and that these gut 10 microbiota features are highly correlated with proinflammatory cytokines in another 11 set of 366 individuals. Fecal metabolomic analysis suggested potential amino 12 acid-related pathways linking gut microbiota to inflammation. This study suggests 13 that gut microbiota may underlie the predisposition of normal individuals to severe : medRxiv preprint ( Figure S1). Gut microbiota data were collected and measured during a follow-up 107 visit of the cohort participants, with a cross-sectional subset of the individuals (n=132) 108 having blood proteomic data at the same time point as the stool collection and another 109 independent prospective subset of the individuals (n=169) having proteomic data at a 110 next follow-up visit ~3 years later than the stool collection. 111 112 Among the cross-sectional subset, using a machine learning-based method: 113 LightGBM and a very conservative and strict tenfold cross-validation strategy, we 114 identified 20 top predictive operational taxonomic units (OTUs), and this subset of 115 core OTUs explained an average 21.5% of the PRS variation (mean out-of-sample 116 R 2 =0.215 across ten cross-validations). The list of these core OTUs along with their 117 taxonomic classification is provided inTable S3. These OTUs were mainly assigned 118 to Bacteroides genus, Streptococcus genus, Lactobacillus genus, Ruminococcaceae 119 family, Lachnospiraceae family and Clostridiales order.120 121To test the verification of the core OTUs, the Pearson correlation analysis showed the 122 coefficient between the core OTUs-predicted PRS and actual PRS reached 0.59 123 (p<0.001), substantially outperforming the predictive capacity of other demographic 124 characteristics and laboratory tests including age, BMI, sex, blood pressure and blood 125 lipids (Pearson's r =0.154, p=0.087) ( Figure 3A). Additionally, we used co-inertia 126 analysis (CIA) to further test co-variance between the 20 identified core OTUs and 20 127 predictive proteomic biomarkers of severe COVID-19, outputting a RV coefficient 128 (ranged from 0 to 1) to quantify the closeness. The results indicated a close 129 association of these OTUs with the proteomic biomarkers (RV=0.12, p<0.05) (Figure 130 S3A). When replicating this analysis stratified by age, significant association was 131 observed...
The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report an in-depth multi-organ proteomic landscape of COVID-19 patient autopsy samples. By integrative analysis of proteomes of seven organs, namely lung, spleen, liver, heart, kidney, thyroid and testis, we characterized 11,394 proteins, in which 5336 were perturbed in COVID-19 patients compared to controls. Our data showed that CTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. Dysregulation of protein translation, glucose metabolism, fatty acid metabolism was detected in multiple organs. Our data suggested upon SARS-CoV-2 infection, hyperinflammation might be triggered which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart and thyroid. Evidence for testicular injuries included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. In summary, this study depicts the multi-organ proteomic landscape of COVID-19 autopsies, and uncovered dysregulated proteins and biological processes, offering novel therapeutic clues.
Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.