In anther development, tapetal cells take part in complex processes, including endomitosis and apoptosis (programmed cell death). The tapetum provides many of the proteins, lipids, polysaccharides and other molecules necessary for pollen development. Several transcription factors, including DYT1, TDF1, AMS, MS188 and MS1, have been reported to be essential for tapetum development and function in Arabidopsis thaliana. Here, we present a detailed cytological analysis of knockout mutants for these genes, along with an in situ RNA hybridization experiment and double mutant analysis showing that these transcription factors form a genetic pathway in tapetum development. DYT1, TDF1 and AMS function in early tapetum development, while MS188 and MS1 are important for late tapetum development. The genetic pathway revealed in this work facilitates further investigation of the function and molecular mechanisms of tapetum development in Arabidopsis.
The pollen wall, an essential structure for pollen function, consists of two layers, an inner intine and an outer exine. The latter is further divided into sexine and nexine. Many genes involved in sexine development have been reported, in which the MYB transcription factor Male Sterile 188 (MS188) specifies sexine in Arabidopsis. However, nexine formation remains poorly understood. Here we report the knockout of TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) leads to nexine absence in Arabidopsis. TEK encodes an AT-hook nuclear localized family protein highly expressed in tapetum during the tetrad stage. Absence of nexine in tek disrupts the deposition of intine without affecting sexine formation. We find that ABORTED MICROSPORES directly regulates the expression of TEK and MS188 in tapetum for the nexine and sexine formation, respectively. Our data show that a transcriptional cascade in the tapetum specifies the development of pollen wall.
These authors contributed equally to this work.
SUMMARYThe tapetum plays a critical role during the development and maturation of microspores. DYSFUNCTIONAL TAPETUM 1 (DYT1) is essential for early tapetal development. Here, we determined that the promoter region (À550 to À463 bp) contains indispensable cis-elements for DYT1 expression. Although DYT1 transcripts can be detected in both meiocytes and tapetal cells, localization of DYT1-GFP demonstrated that DYT1 is strictly located in tapetal cells during microsporogenesis. Chromatin immunoprecipitation (ChIP) analysis revealed that DYT1 directly binds the promoter region of Defective in Tapetal Development and Function 1 (TDF1), a transcription factor essential for tapetum development. When TDF1 driven by the DYT1 promoter is expressed in a dyt1 mutant, the expression of the transcription factors AMS, MS188/MYB80, TEK and MS1 and the pollen wall-related genes are restored. Although the pollen wall is not formed and the microspores are ruptured, DIOC 2 staining showed that fatty acids, the precursors of the pollen wall, were synthesized in the transgenic lines. These results indicate that DYT1 regulates the expression of AMS, MS188/MYB80, TEK and MS1 for pollen wall formation, primarily via TDF1.
The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.