Aspergillus flavus is an opportunistic fungal pathogen that colonizes agriculture crops with aflatoxin contamination. We found that Perillaldehyde (PAE) effectively inhibited A. flavus viability and aflatoxin production by inducing excess reactive oxygen species (ROS). Transcriptome analysis indicated that the Gα protein FadA was significantly induced by PAE. Functional characterization of FadA showed it is important for asexual development and aflatoxin biosynthesis by regulation of cAMP-PKA signalling. The ΔfadA mutant was more sensitive to PAE, while ΔpdeL and ΔpdeH mutants can tolerate excess PAE compared to wild-type A. flavus. Further RNAsequence analysis showed that fadA was important for expression of genes involved in oxidationreduction and cellular metabolism. The flow cytometry and fluorescence microscopy demonstrated that ΔfadA accumulated more concentration of ROS in cells, and the transcriptome data indicated that genes involved in ROS scavenging were downregulated in ΔfadA mutant. We further found that FadA participated in regulating response to extracellular environmental stresses by increasing phosphorylation levels of MAPK Kinase Slt2 and Hog1. Overall, our results indicated that FadA signalling engages in mycotoxin production and A. flavus resistance to antimicrobial PAE, which provide valuable information for controlling this fungus and AF biosynthesis in pre-and postharvest of agricultural crops.
Herbs derived from roots, leaves, flowers, or fruits of plants are unavoidably contaminated with fungi and mycotoxins during growth, harvest, and storage, thereby posing a health threat to humans. Especially, root herbs (RHs) are more easily contaminated with fungi and mycotoxins because the roots are in direct contact with the soil. Here, we investigated the occurrence of fungi, aflatoxins (AFs), and ochratoxin A (OTA) in eight RHs that are used as medicines, beverages, dietary supplements, and functional foods in China and other countries. Morphological observation and MultiGeneBlast (β-tubulin and calmodulin) were used to identify the potentially toxigenic fungi. Of the 48 samples tested, all were contaminated by fungi, and 1,844 isolates belonging to 25 genera were detected. The genera Aspergillus and Penicillium, which contain potentially toxigenic fungal species, represented a frequency of 10 and 25%, respectively. Thirty-three isolates of Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, and Penicillium polonicum were arbitrarily selected for analysis of their toxigenic potential. Five of 13 isolates of A. flavus and 1 isolate of A. parasiticus produced AFs, whereas OTA production was not detected for any of the isolates of A. niger and P. polonicum. The occurrence of AFs and OTA in the 48 samples of eight RHs was tested by ultraperformance liquid chromatography-tandem mass spectrometry; 37.50% of samples from six RHs were contaminated with AFs and 16.67% of samples from four RHs were contaminated with OTA. Seven (14.58%) and four (8.33%) samples of ginseng, polygala, and liquorice exceeded the permissible limits of aflatoxin B and AFs, respectively. Because ginseng, polygala, and liquorice are widely used as herbs, dietary supplements, and functional foods, the high frequency of AF contamination of these herbs indicated by our current study warrant attention to raise public awareness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.