The Relativistic Heavy Ion Collider (RHIC), as the world's first and only polarized proton collider, offers a unique environment in which to study the spin structure of the proton. In order to study the proton's transverse spin structure, the PHENIX experiment at RHIC took data with transversely polarized beams in 2001-02 and 2005, and it has plans for further running with transverse polarization in 2006 and beyond. Results from early running as well as prospective measurements for the future will be discussed.
Although there are many reports demonstrating that thiobacillus denitrificans (TDN) may inhibit corrosion caused by sulfate-reducing bacteria (SRB), very little is known for the inhibition effect in crude petroleum. In this work, the inhibition effect of TDN on the corrosion of X70 pipeline steel caused by SRB in crude petroleum was studied. The optimum incubation condition of TDN was obtained by orthogonal experimentation. The growth characteristics of TDN and SRB in crude petroleum were reflected via analyzing the transformation of sulfur. The inhibition effect on corrosion of X70 pipeline steel in crude petroleum was analyzed by an X-ray energy dispersive spectrometer in conjunction with weight loss measurement. The results suggested that TDN could effectively inhibit SRBinvolved corrosion by biologically oxidizing sulfide to sulfate in crude petroleum.
This study focuses on microstructure and mechanical properties as a function of location in additively manufactured high-strength weathering steel components using gas tungsten arc as the heat source. Variations of microstructure and mechanical properties in various locations are presented and analysed. The as-deposited high-strength weathering steel is composed of columnar grain morphology with proeutectoid ferrite, acicular ferrite, side plate ferrite and a small amount of pearlite microstructure in the top region, equiaxed grains with ferrite and pearlite in the middle region, and columnar grains in the near-substrate region with the microstructure similar to that in the top region. There exist obvious layer bands in the middle region, and the forming mechanism of the bands is addressed. Microhardness measurement and tensile strength testing indicate obvious changes in different regions, depending on location and direction of testing specimens. The microhardness in the middle region is inferior to that in both near-substrate and top regions. The ultimate tensile strengths in the travel and deposition height directions are approximately 553 and 506 MPa, respectively. Different locations exhibit heterogeneous tensile strength and elongation due to various microstructures and boundaries. The results indicate the feasibility to fabricate high-strength weathering steel components with good tensile properties using gas tungsten arc–based additive manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.