Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine.
The heptamethylbenzenium cation (heptaMB(+)) has been speculated to be one of the most important active intermediates involved in the "hydrocarbon pool" mechanism of methanol-to-olefin (MTO) conversion. By the use of DNL-6, a newly synthesized SAPO-type molecular sieve with large cavities, heptaMB(+) has for the first time been directly observed during methanol conversion under real working conditions. (13)C-labeling experiments suggested that olefin formation mediated by heptaMB(+) mainly follows the side-chain mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.