Dorsoventral patterning of the Drosophila embryo is initiated by a ventralizing signal. Production of this signal requires the serine proteases Gastrulation Defective (GD), Snake, and Easter, which genetic studies suggest act sequentially in a cascade that is activated locally in response to a ventral cue provided by the pipe gene. Here, we demonstrate biochemically that GD activates Snake, which in turn activates Easter. We also provide evidence that GD zymogen cleavage is important for triggering this cascade but is not spatially localized by pipe. Our results suggest that a broadly, rather than locally, activated protease cascade produces the ventralizing signal, so a distinct downstream step in this cascade must be spatially regulated to restrict signaling to the ventral side of the embryo.serine protease ͉ dorsoventral axis ͉ transfection
The dorsoventral axis of the Drosophila embryo is induced by a ventrally restricted ligand for the receptor Toll. The Toll ligand is generated by a proteolytic processing reaction, which occurs at the end of a proteolytic cascade and requires the gastrulation defective (gd), nudel, pipe, and windbeutel genes. Here we demonstrate that the GD protein is a serine protease and that the three other genes act to restrict GD activity to the ventral side of the embryo. Our data support a model in which the GD protease catalyzes the ventral activation of the proteolytic cascade that produces the Toll ligand.
Dry age-related macular degeneration (AMD), a multifactorial progressive degenerative disease of the retinal photoreceptors, pigmented epithelium and Bruch's membrane/choroid in central retina, causes visual impairment in millions of elderly people worldwide. The only available therapy for this disease is the over-the-counter (OTC) multi-vitamins plus macular xanthophyll (lutein/zeaxanthin) which attempts to block the damages of oxidative stress and ionizing blue light. Therefore development of dry AMD prescribed treatment is a pressing unmet medical need. However, this effort is currently hindered by many challenges, including an incomplete understanding of the mechanism of pathogenesis that leads to uncertain targets, confounded by not yet validated preclinical models and the difficulty to deliver the drugs to the posterior segment of the eye. Additionally, with slow disease progression and a less than ideal endpoint measurement method, clinical trials are necessarily large, lengthy and expensive. Increased commitment to research and development is an essential foundation for dealing with these problems. Innovations in clinical trials with novel endpoints, nontraditional study designs and the use of surrogate diseases might shorten the study time, reduce the patient sample size and consequently lower the budget for the development of the new therapies for the dry AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.