Mutations in the SCN1A gene have been identified in epilepsy patients with widely variable phenotypes and modes of inheritance and in asymptomatic carriers. This raises challenges in evaluating the pathogenicity of SCN1A mutations. We systematically reviewed all SCN1A mutations and established a database containing information on functional alterations. In total, 1,257 mutations have been identified, of which 81.8% were not recurrent. There was a negative correlation between phenotype severity and missense mutation frequency. Further analyses suggested close relationships among genotype, functional alteration, and phenotype. Missense mutations located in different sodium channel regions were associated with distinct functional changes. Missense mutations in the pore region were characterized by the complete loss of function, similar to haploinsufficiency. Mutations with severe phenotypes were more frequently located in the pore region, suggesting that functional alterations are critical in evaluating pathogenicity and can be applied to patient management. A negative correlation was found between phenotype severity and familial incidence, and incomplete penetrance was associated with missense and splice site mutations, but not truncations or genomic rearrangements, suggesting clinical genetic counseling applications. Mosaic mutations with a load of 12.5-25.0% were potentially pathogenic with low penetrance, suggesting the need for future studies on less pathogenic genomic variations.
Mutations in SCN1A, the gene encoding the α subunit of Nav1.1 channel, can cause epilepsies with wide ranges of clinical phenotypes, which are associated with the contrasting effects of channel loss-of-function or gain-of-function. In this project, CRISPR/Cas9- and TALEN-mediated genome-editing techniques were applied to induced pluripotent stem cell (iPSC)-based-disease model to explore the mechanism of epilepsy caused by SCN1A loss-of-function mutation. By fluorescently labeling GABAergic subtype in iPSC-derived neurons using CRISPR/Cas9, we for the first time performed electrophysiological studies on SCN1A-expressing neural subtype and monitored the postsynaptic activity of both inhibitory and excitatory types. We found that the mutation c.A5768G, which led to no current of Nav1.1 in exogenously transfected system, influenced the properties of not only Nav current amount, but also Nav activation in Nav1.1-expressing GABAergic neurons. The two alterations in Nav further reduced the amplitudes and enhanced the thresholds of action potential in patient-derived GABAergic neurons, and led to weakened spontaneous inhibitory postsynaptic currents (sIPSCs) in the patient-derived neuronal network. Although the spontaneous excitatory postsynaptic currents (sEPSCs) did not change significantly, when the frequencies of both sIPSCs and sEPSCs were further analyzed, we found the whole postsynaptic activity transferred from the inhibition-dominated state to excitation in patient-derived neuronal networks, suggesting that changes in sIPSCs alone were sufficient to significantly reverse the excitatory level of spontaneous postsynaptic activity. In summary, our findings fill the gap of our knowledge regarding the relationship between SCN1A mutation effect recorded on exogenously transfected cells and on Nav1.1-expressing neurons, and reveal the physiological basis underlying epileptogenesis caused by SCN1A loss-of-function mutation.
Summary
Purpose: Generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI) are associated with sodium channel α‐subunit type‐1 gene (SCN1A) mutations. Febrile seizures and partial seizures occur in both GEFS+ and SMEI; sporadic onset and seizure aggravation by antiepileptic drugs (AEDs) are features of SMEI. We thus searched gene mutations in isolated cases of partial epilepsy with antecedent FS (PEFS+) that showed seizure aggravations by AEDs.
Methods: Genomic DNA from four patients was screened for mutations in SCN1A, SCN2A, SCN1B, and GABRG2 using denaturing high‐performance liquid chromatography (dHPLC) and sequencing. Whole‐cell patch clamp analysis was used to characterize biophysical properties of two newly defined mutants of Nav1.1 in tsA201 cells.
Results: Two heterozygous de novo mutations of SCN1A (R946H and F1765L) were detected, which were proven to cause loss of function of Nav1.1. When the functional defects of mutants reported previously are compared, it is found that all mutants from PEFS+ have features of loss of function, whereas GEFS+ shows mild dysfunction excluding loss of function, coincident with mild clinical manifestations. PEFS+ is similar to SMEI clinically with possible AED‐induced seizure aggravation and biophysiologically with features of loss of function, and different from SMEI by missense mutation without changes in hydrophobicity or polarity of the residues.
Conclusions: Isolated milder PEFS+ may associate with SCN1A mutations and loss of function of Nav1.1, which may be the basis of seizure aggravation by sodium channel–blocking AEDs. This study characterized phenotypes biologically, which may be helpful in understanding the pathophysiologic basis, and further in management of the disease.
Voltage-gated sodium channels play critical roles in the excitability of the brain. A decreased level of Na(v)1.1 has been identified as the cause of severe myoclonic epilepsy in infancy. In the present study, we identified the transcription start site and three 5'-untranslated exons of SCN1A by using 5'-full RACE. The 2.5-kb region upstream of the transcription start site was targeted as a potential location of the promoter. The 2.5-kb genomic fragment (P(2.5), from +26 to -2,500) and the 2.7-kb fragment (P(2.7), P(2.5) combined with the 227-bp 5'-untranslated exons) were cloned to produce luciferase constructs. The P(2.5) and the P(2.7) drove luciferase gene expression in the human neuroblastoma cell line SH-SY5Y but not in the human embryonic kidney cell line HEK-293. The 5'-untranslated exons could greatly enhance gene expression in SH-SY5Y cells. The P(2.7) could be used as a functional unit to study the role of SCN1A noncoding sequences in gene expression. These findings will also help in exploring the possibility of promoter mutant-induced diseases and revealing the mechanism underlying the regulation of SCN1A expression in the normal brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.