In two-dimensional space, an elasto-plastic finite element computational model was established to simulate inner support for excavation on the basis of the general-purpose finite element software ABAQUS. The soil was assumed to be a uniform and normally consolidated clay layer and strut was discreted by spring element. Compared with published case study, it can be concluded that FEM software AQAQUS can present one reliable simulation progress of inner support for excavation.
The discontinuous deformation analysis (DDA) has been extensively applied in geotechnical engineering owing to its salient merits in the modeling of discontinuities. However, this method assumes a constant stress field within every block and hence cannot provide reliable estimation for block deformations and stresses. This paper proposes a novel scheme to improve the accuracy of the DDA. In our method, advanced subdivision is introduced to represent a block as an assembly of triangular or quadrilateral elements, in which overlapped element edges are separated from each other and are glued together by bonding springs. The accuracy and the effectiveness of the proposed method are illustrated by three numerical experiments for both continuous and discontinuous problems.
A novel coupling scheme is presented to combine the discontinuous deformation analysis (DDA) and the interior penalty Galerkin (IPG) method for the modeling of contacts. The simultaneous equilibrium equations are assembled in a mixed strategy, where the entries are derived from both discontinuous Galerkin variational formulations and the strain energies of DDA contact springs. The contact algorithms of the DDA are generalized for element contacts, including contact detection criteria, open-close iteration, and contact submatrices. Three representative numerical examples on contact problems are conducted. Comparative investigations on the results obtained by our coupling scheme, ANSYS, and analytical theories demonstrate the accuracy and effectiveness of the proposed method.
An elasto-plastic total stress finite-element computational model is established in two dimensional space to study pile response due to excavation-induced soil movement on the basis of the general-purpose finite element software ABAQUS. And the soil is assumed to be a uniform normally consolidated clay layer. Influences of various parameters including undrained shear strength of soil, excavation depth, strut stiffness and distance from excavation on pile response are investigated. The results indicate that the excavation-induced soil movement is critical for adjacent piles and increasing the undrained shear strength of soil and distance from excavation face would be helpful to control passive pile responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.