This study aimed at improving the photocatalytic (PC) oxidation of humic acids (HA) in TiO2 suspensions by adding cationic ion such as calcium or magnesium. A set of tests was first conducted in the dark to study the adsorption of HA onto TiO2 in suspensions at different pH and calcium concentrations. The experiment demonstrated that the adsorption of HA onto the TiO2 particles was either pH-dependent or calcium strength-dependent due to electrostatic interaction and calcium ion bridging. The photodegradation of HA in the presence of UV irradiation was investigated as a function of pH and the concentration of calcium and magnesium ions. The results showed that the adsorption behavior between HA and TiO2 played a very important role during the PC oxidation process. The PC oxidation could be enhanced at neutral pH by increasing the cation strength. The kinetics of HA PC degradation in TiO2 suspensions with different initial concentrations was also studied using the Langmuir-Hinshelwood model.
The fabrication of bio‐hybrid functional films is demonstrated by applying a materials assembly technique. Based on the hierarchical structures of silk fibroin materials, functional molecular/materials, i.e., quantum dots (QDs), can be fixed to amino acid groups in silk fibroin films. It follows that white‐light‐emitting QD silk hybrid films are obtained by hydrogen bond molecular recognition to the –COO– groups functionalized to blue luminescent ZnSe (5.2 nm) and yellow luminescent CdTe (4.1 nm) QDs in a molar ratio of 30:1 of ZnSe to CdTe QDs. Simultaneously, a systematic blue shift in the emission peak is observed from the QD solution to QDs silk fibroin films. The significant blue shift hints the appearance of the strong interaction between QDs and silk fibroins, which causes strong white‐light‐emitting uniform silk films. The molecular recognized interactions are confirmed by high resolution transmission electron microscopy, field scanning electron microscope, and attenuated total internal reflectance Fourier transform infrared spectroscopy. The QD silk films show unique advantages, including simple preparation, tunable white‐light emission, easy manipulation, and low fabrication costs, which make it a promising candidate for multicomponent optodevices.
Humic acid (HA) is one of natural organics existing in water supply as a precursor of trihalomethanes formation in chlorination. The photo-degradation of HA in aqueous solution by photoelectrocatalytic (PEC) oxidation using a Ti/TiO 2 mesh electrode was investigated in terms of UV absorbance at 254 nm, colour and TOC concentration. The key factors affecting the PEC oxidation efficiency were studied, including the concentration of electrolyte, electrical bias applied, pH value of HA solution, the intensity of incident light and the area of Ti/TiO 2 mesh photoelectrodes. The first order kinetic model was applied to describe the PEC oxidation, in which the kinetic constant k was verified by the experimental data as a function of the concentration of electrolyte, light intensity, the area of Ti/TiO 2 mesh electrode and the voltage of electrical bias applied. It was found that there was an optimal bias voltage of 1.63V and low pH value was favourable for TOC removal in HA solution. Our investigation showed that PEC oxidation was a convenient way to mineralise the organic matters with high efficiency.
KEYWORDS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.