Commercial or clinical
tissue adhesives are currently limited due
to their weak bonding strength on wet biological tissue surface, low
biological compatibility, and slow adhesion formation. Although catechol-modified
hyaluronic acid (HA) adhesives are developed, they suffer from limitations:
insufficient adhesiveness and overfast degradation, attributed to
low substitution of catechol groups. In this study, we demonstrate
a simple and efficient strategy to prepare mussel-inspired HA hydrogel
adhesives with improved degree of substitution of catechol groups.
Because of the significantly increased grafting ratio of catechol
groups, dopamine-conjugated dialdehyde–HA (DAHA) hydrogels
exhibit excellent tissue adhesion performance (i.e., adhesive strength
of 90.0 ± 6.7 kPa), which are significantly higher than those
found in dopamine-conjugated HA hydrogels (∼10 kPa), photo-cross-linkable
HA hydrogels (∼13 kPa), or commercially available fibrin glues
(2–40 kPa). At the same time, their maximum adhesion energy
is 384.6 ± 26.0 J m–2, which also is 40–400-fold,
2–40-fold, and ∼8-fold higher than those of the mussel-based
adhesive, cyanoacrylate, and fibrin glues, respectively. Moreover,
the hydrogels can gel rapidly within 60 s and have a tunable degradation
suitable for tissue regeneration. Together with their cytocompatibility
and good cell adhesion, they are promising materials as new biological
adhesives.
Electronic fibers used to fabricate wearable triboelectric nanogenerator (TENG) for harvesting human mechanical energy have been extensively explored. However, little attention is paid to their mutual advantages of environmental friendliness, mechanical properties, and stability. Here, we report a super-strong, biodegradable, and washable cellulose-based conductive macrofibers, which is prepared by wet-stretching and wet-twisting bacterial cellulose hydrogel incorporated with carbon nanotubes and polypyrrole. The cellulose-based conductive macrofibers possess high tensile strength of 449 MPa (able to lift 2 kg weights), good electrical conductivity (~ 5.32 S cm−1), and excellent stability (Tensile strength and conductivity only decrease by 6.7% and 8.1% after immersing in water for 1 day). The degradation experiment demonstrates macrofibers can be degraded within 108 h in the cellulase solution. The designed fabric-based TENG from the cellulose-base conductive macrofibers shows a maximum open-circuit voltage of 170 V, short-circuit current of 0.8 µA, and output power at 352 μW, which is capable of powering the commercial electronics by charging the capacitors. More importantly, the fabric-based TENGs can be attached to the human body and work as self-powered sensors to effectively monitor human motions. This study suggests the potential of biodegradable, super-strong, and washable conductive cellulose-based fiber for designing eco-friendly fabric-based TENG for energy harvesting and biomechanical monitoring.
Water-insoluble polysaccharide (TM3a), extracted from sclerotia of Pleurotus tuber-regium, was identified as a hyperbranched beta-d-glucan from the results of one- and two-dimensional NMR and GC-MS analysis. The degree of branching of TM3a is 65.5%. TM3a was fractionated by using a non-solvent addition method into 14 fractions, and its solution properties in 0.25 M LiCl/dimethylsulfoxide (DMSO) solution were studied systematically by using static laser light scattering, dynamic light scattering, and viscometry at 25 degrees C. The dependences among the values of intrinsic viscosity ([eta]), radius of gyration (z 1/2), and hydradynamic radius (Rh) on weight-average molecular weight (Mw) were found as the following: [eta] = 0.46Mw0.30+/-0.01, z 1/2 = 4.79 x 10-2Mw0.43+/-0.04, and Rh = 5.01 x 10-2Mw0.41+/-0.02 in the Mw range from 1.94 x 105 to 2.06 x 107 for TM3a in a 0.25 M LiCl/DMSO solution at 25 degrees C. The current theory of polymer solution was applied to explain the relationship among the fractal dimension, ratio of geometric to hydrodynamic radius (rho = z 1/2/Rh), and MwA2/[eta] of TM3a. The results indicated that TM3a existed as a compact chain conformation with a sphere-like structure in LiCl/DMSO solution. Furthermore, by using transmission electron microscopy, we observed directly the spherical molecules with an average diameter of 23.0 +/- 1.8 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.