BackgroundPorcine reproductive and respiratory syndrome virus (PRRSV) infection leads to substantial economic losses to the swine industry worldwide. However, no effective countermeasures exist to combat this virus infection so far. The most common antiviral strategy relies on directly inhibiting viral proteins. However, this strategy invariably leads to the emergence of drug resistance due to the error-prone nature of viral ploymerase. Targeting cellular proteins required for viral infection for developing new generation of antivirals is gaining concern. Recently, heat shock protein 90 (HSP90) was found to be an important host factor for the replication of multiple viruses and the inhibition of HSP90 showed significant antiviral effects. It is thought that the inhibition of HSP90 could be a promising broad-range antiviral approach. However, the effects of HSP90 inhibition on PRRSV infection have not been evaluated. In the current research, we tried to inhibit HSP90 and test whether the inhibition affect PRRSV infection.MethodsWe inhibit the function of HSP90 with two inhibitors, geldanamycin (GA) and 17- allylamono-demethoxygeldanamycin (17-AAG), and down-regulated the expression of endogenous HSP90 with specific small-interfering RNAs (siRNAs). Cell viability was measured with alamarBlue. The protein level of viral N was determined by western blotting and indirect immunofluorescence (IFA). Besides, IFA was employed to examine the level of viral double-stranded RNA (dsRNA). The viral RNA copy number and the level of IFN-β mRNA were determined by quantitative real-time PCR (qRT-PCR).ResultsOur results indicated that both HSP90 inhibitors showed strong anti-PRRSV activity. They could reduce viral production by preventing the viral RNA synthesis. These inhibitory effects were not due to the activation of innate interferon response. In addition, we observed that individual knockdown targeting HSP90α or HSP90β did not show dramatic inhibitory effect. Combined knockdown of these two isoforms was required to reduce viral infection.ConclusionsOur results shed light on the possibility of developing potential therapeutics targeting HSP90 against PRRSV infection.
For efficient biodiesel production, an acid-activated clay (AC) modified by calcium hydroxide and sodium hydroxide (CaNa/AC) was prepared as a catalyst. CaNa/AC and Na/AC were characterized by Hammett indicators, CO2-TPD, FT-IR, XRD, and N2 adsorption techniques. The influence of catalyst dose, reaction temperature, methanol/oil molar ratio, and reaction time on the transesterification of Jatropha oil was studied. Due to the introduction of calcium, CaNa/AC displayed a higher activity and stability, thereby achieving an oil conversion of 97% under the optimal reaction conditions and maintaining over 80% activity after five successive reuses. The reaction was accelerated as the temperature rose, and the apparent activation energy of CaNa/AC was 75.6 kJ·mol−1. The enhanced biodiesel production by CaNa/AC was ascribed to the increase in active sites and higher basic strength. This study presents a facile and practical method for producing biodiesel on large-scale operation.
Abstract-We proposed a novel method of people recognition based on the structure of bones, which is detected by Kinect sensor for skeletal tracking. By using 3D depth image achieved by Kinect, body's skeleton information is extracted as 20 joints with joint coordinates, from which body's skeletal features are calculated into different length ratio between each bone. Later these features are processed by a BP artificial neural network (ANN) classifier to differentiate several samples. The results show a high accuracy up to 98% test samples, which indicate that the body's skeletal features can provide the effective judgment in people recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.