With the full time-domain electromagnetic simulation technique, the time-domain propagation properties such as the temporal pulse waveform, the pulse compression and the electric field distribution inside the material are comparably investigated by transmitting the time-reversal pulsed electromagnetic wave and the pulsed electromagnetic wave through the double negative material of the Smith structure, respectively. The results show that after the time-reversal pulsed electromagnetic wave passes through the double negative material, the received electromagnetic wave exhibits remarkable spatial and temporal focusing at the location of the initial excitation. The most interesting physical phenomenon is that the peak values of the electric field inside the double negative material become smaller and tend to be uniform in the magnitude. These novel physical phenomena would be very helpful for developing new electronic devices and systems with double negative materials for the purpose of high power applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.