Traumatic brain injury leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from traumatic brain injury can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signaling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfill these requirements as it is comprised of a plethora of biomolecules readily accessible as a traumatic brain injury biotherapy. In the present study, we have tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of traumatic brain injury. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56 °C-30 minutes heat-treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals' cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µL in the lesioned area, followed by daily 60 µL intranasal administration from day 1 to 6 post-injury.
Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ca. 1–50 ng/mL levels. We demonstrate, using the two mouse models of traumatic brain injury that topical application and intranasal platelet lysate consistently improved mice motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that HPPL reversed several pathways promoted by both CCI and CBS and related to transport, post-synaptic density, mitochondria or lipid metabolism. The present data strongly support for the first time that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.
MicroRNAs (miRNAs) have been reported to directly alter the virus life cycle and virus–host interactions, and so are considered promising molecules for controlling virus infection. In the present study, we observed that miR‐155 time‐dependently downregulated upon dengue virus (DENV) infection. In contrast, exogenous overexpression of miR‐155 appeared to limit viral replication in vitro, suggesting that the low levels of miR‐155 would be beneficial for DENV replication. In vivo, overexpression of miR‐155 protected ICR suckling mice from the life‐threatening effects of DENV infection and reduced virus propagation. Further investigation revealed that the anti‐DENV activity of miR‐155 was due to target Bach1, resulting in the induction of the heme oxygenase‐1 (HO‐1)‐mediated inhibition of DENV NS2B/NS3 protease activity, ultimately leading to induction of antiviral interferon responses, including interferon‐induced protein kinase R (PKR), 2′‐5′‐oligoadenylate synthetase 1 (OAS1), OAS2, and OAS3 expression, against DENV replication. Collectively, our results provide a promising new strategy to manage DENV infection by modulation of miR‐155 expression.
Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.