Lead discovery and molecular target identification are important for developing novel pesticides. Scaffold hopping, an effective approach of modern medicinal and agrochemical chemistry for a rational design of target molecules, is aiming to design novel molecules with similar structures and similar/better biological performance. Herein, 24 new ferimzone derivatives were designed and synthesized by a scaffold-hopping strategy. In vitro bioassays indicated that compound 5o showed similar potency to ferimzone against Cercospora arachidicola and 2-fold higher potency than ferimzone against Alternaria solani. Compounds 5q, 6a, and 6d displayed fungicidal activity with EC50 values ranging from 1.17 to 3.84 μg/mL against Rhizoctonia solani, and compounds 5q and 6a displayed 1.6–1.8-fold higher activity than ferimzone against Fusarium graminearum. The in vivo bioassays at 200 μg/mL indicated that compound 5q was more potent than ferimzone against Pyricularia oryzae (90% vs 70% efficacy, respectively). Density functional theory (DFT) calculations elucidated the structure–energy relationship. Although the mode of action of ferimzone is still unclear, studies suggested that compound 5q significantly inhibited the growth and reproduction of R. solani, and its energy metabolism pathways (e.g., starch, sucrose, lipids, and glutathione) were seriously downregulated after a 5q treatment.
1,2,3-Thiadiazoles are among the most important heterocyclic motifs, with wide applications in natural products and medicinal chemistry. Herein, we disclose a tandem reaction for the synthesis of structurally diverse 1,2,3-thiadiazoles from 3,4dichloroisothiazol-5-ketones and hydrazines. This method is characterized by mild external oxidant-and sulter-free reaction conditions, a broad substrate scope, and easy purification.
The development of new fungicides is vital for safeguarding crops and ensuring sustainable agriculture. Building on our previous finding that 4-(3,4-dichloroisothiazole)-7-hydroxy coumarins can be used as fungicidal leads, 44 novel coumarin ester derivatives were designed and synthesized to evaluate whether esterification could enhance their fungicidal activity. In vitro fungicidal bioassays indicated that compound 2ai displayed good activity against Alternaria solani, Botrytis cinereal, Cercospora arachidicola, Physalospora piricola and Sclerotinia sclerotiorum, with an EC50 value ranging from 2.90 to 5.56 μg/mL, comparable to the lead compound 1a, with its EC50 value ranging from 1.92 to 9.37 μg/mL. In vivo bioassays demonstrated that compounds 1a, 2ar and 2bg showed comparable, excellent efficacy against Pseudoperonospora cubensis at a dose of 25 µg/mL. Our research shows that the esterification of 4-(3,4-dichloroisothiazole) 7-hydroxycoumarins results in a fungicidal activity equivalent to that of its lead compounds. Furthermore, our density functional theory (DFT) calculations and 3D-QSAR modeling provide a rational explanation of the structure–activity relationship and offer valuable insights to guide further molecular design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.