Multi-hop reading comprehension focuses on one type of factoid question, where a system needs to properly integrate multiple pieces of evidence to correctly answer a question. Previous work approximates global evidence with local coreference information, encoding coreference chains with DAG-styled GRU layers within a gated-attention reader. However, coreference is limited in providing information for rich inference. We introduce a new method for better connecting global evidence, which forms more complex graphs compared to DAGs. To perform evidence integration on our graphs, we investigate two recent graph neural networks, namely graph convolutional network (GCN) and graph recurrent network (GRN). Experiments on two standard datasets show that richer global information leads to better answers. Our method performs better than all published results on these datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.