Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have been substantially studied in recent years due to their fast communication rate and high signal-to-noise ratio. The transfer learning is typically utilized to improve the performance of SSVEP-based BCIs with auxiliary data from the source domain. This study proposed an intersubject transfer learning method for enhancing SSVEP recognition performance through transferred templates and transferred spatial filters. In our method, the spatial filter was trained via multiple covariance maximization to extract SSVEP-related information. The relationships between the training trial, the individual template, and the artificially constructed reference are involved in the training process. The spatial filters are applied to the above templates to form two new transferred templates, and the transferred spatial filters are obtained accordingly via the least-square regression. The contribution scores of different source subjects can be calculated based on the distance between the source subject and the target subject. Finally, a fourdimensional feature vector is constructed for SSVEP detection. To demonstrate the effectiveness of the proposed method, a publicly available dataset and a self-collected dataset were employed for performance evaluation. The extensive experimental results validated the feasibility of the proposed method for improving SSVEP detection.
The brain-computer interface (BCI) enables paralyzed people to directly communicate with and operate peripheral equipment. The steady-state visual evoked potential (SSVEP)based BCI system has been extensively investigated in recent years due to its fast communication rate and high signal-tonoise ratio. Many present SSVEP recognition methods determine the target class via finding the largest correlation coefficient. However, the classification performance usually degrades when the largest coefficient is not significantly different from the rest of the values. This study proposed a Bayesian-based classification confidence estimation method to enhance the target recognition performance of SSVEP-based BCI systems. In our method, the differences between the largest and the other values generated by a basic target identification method are used to define a feature vector during the training process. The Gaussian mixture model (GMM) is then employed to estimate the probability density functions of feature vectors for both correct and wrong classifications. Subsequently, the posterior probabilities of being an accurate and false classification are calculated via Bayesian inference in the test procedure. A classification confidence value (CCValue) is presented based on two posterior probabilities to estimate the classification confidence. Finally, the decisionmaking rule can determine whether the present classification result should be accepted or rejected. Extensive evaluation studies were performed on an open-access benchmark dataset and a self-collected dataset. The experimental results demonstrated the effectiveness and feasibility of the proposed method for improving the reliability of SSVEP-based BCI systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.