Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.
We report variation of the work function for single and bi-layer graphene devices measured by scanning Kelvin probe microscopy (SKPM). Using the electric field effect, the work function of graphene can be adjusted as the gate voltage tunes the Fermi level across the charge neutrality point. Upon biasing the device, the surface potential map obtained by SKPM provides a reliable way to measure the contact resistance of individual electrodes contacting graphene.High conductivity 1,2 and low optical absorption 3,4 make graphene an attractive material for use as a flexible transparent conductive electrode [5][6][7][8] . This atomically thin carbon layer provides the additional benefit that its work function can be adjusted by the electric field effect (EFE). Since the band alignment of two different materials is determined by their respective work functions, control over the graphene work function is the key to reducing the contact barriers of graphene top electrode devices 9, 10 . Previous scanning probe based studies [11][12][13] reveal that the work function of graphene is in a similar range to that of graphite, ~4.6 eV 14 , and depends sensitively on the number of layers 15,16 . However, the active controlling of the graphene work function has yet to be demonstrated.In this study, we apply Scanning Kelvin probe microscope (SKPM) techniques to back-gated graphene devices and demonstrate that the work function can be controlled over a wide range by EFE induced modulation of carrier concentration. SKPM is an atomic force microscope (AFM) based experimental technique that can map the surface potential variation of a sample surface relative to that of metallic tip 17 . The change of work function is ascribed by the Fermi level shift due to the EFE induced carrier doping and is well quantified by the electronic band structure of graphene. On biased graphene devices, SKPM also allows us to accurately measure graphene/metal contact resistances by mapping the surface potential of a device. The wide range of control over the work function demonstrated here suggests graphene as an ideal material for applications where work function optimization is important.Graphene samples were prepared by mechanical exfoliation 18 on Si wafers covered with 300 nm thick SiO 2 and then Cr/Au electrodes (5 nm/30 nm thickness) were fabricated by
The conductivity of graphene samples with various levels of disorder is investigated for a set of specimens with mobility in the range of 1-20x10(3) cm2/V sec. Comparing the experimental data with the theoretical transport calculations based on charged impurity scattering, we estimate that the impurity concentration in the samples varies from 2-15x10(11) cm(-2). In the low carrier density limit, the conductivity exhibits values in the range of 2-12e2/h, which can be related to the residual density induced by the inhomogeneous charge distribution in the samples. The shape of the conductivity curves indicates that high mobility samples contain some short-range disorder whereas low mobility samples are dominated by long-range scatterers.
This paper will discuss the design and construction of BESIII [1], which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + ecollider [2]. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in the steel magnetic flux return. The level 1 trigger system, Data Acquisition system and the event filter system based on networked computers will also be described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.