Human replication protein A (RPA), a heterotrimeric protein complex, was originally defined as a eukaryotic single-stranded DNA binding (SSB) protein essential for the in vitro replication of simian virus 40 (SV40) DNA. Since then RPA has been found to be an indispensable player in almost all DNA metabolic pathways such as, but not limited to, DNA replication, DNA repair, recombination, cell cycle, and DNA damage checkpoints. Defects in these cellular reactions may lead to genome instability and, thus, the diseases with a high potential to evolve into cancer. This extensive involvement of RPA in various cellular activities implies a potential modulatory role for RPA in cellular responses to genotoxic insults. In support, RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATR (ATM and Rad3-related), and DNA-dependent protein kinase (DNA-PK). The hyperphosphorylation may change the functions of RPA and, thus, the activities of individual pathways in which it is involved. Indeed, there is growing evidence that hyperphosphorylation alters RPA-DNA and RPA-protein interactions. In addition, recent advances in understanding the molecular basis of the stress-induced modulation of RPA functions demonstrate that RPA undergoes a subtle structural change upon hyperphosphorylation, revealing a structure-based modulatory mechanism. Furthermore, given the crucial roles of RPA in a broad range of cellular processes, targeting RPA to inhibit its specific functions, particularly in DNA replication and repair, may serve a valuable strategy for drug development towards better cancer treatment.
The life of proton exchange membrane fuel cells (PEMFC) is currently limited by the mechanical endurance of polymer electrolyte membranes and membrane electrode assemblies (MEAs). In this paper, the authors report recent experimental and modeling work toward understanding the mechanisms of delayed mechanical failures of polymer electrolyte membranes and MEAs under relevant PEMFC operating conditions. Mechanical breach of membranes/MEAs in the form of pinholes and tears has been frequently observed after long-term or accelerated testing of PEMFC cells/stacks. Catastrophic failure of cell/stack due to rapid gas crossover shortly follows the mechanical breach. Ex situ mechanical characterizations were performed on MEAs after being subjected to the accelerated chemical aging and relative humidity (RH) cycling tests. The results showed significant reduction of MEA ductility manifested as drastically reduced strain-to-failure of the chemically aged and RH-cycled MEAs. Postmortem analysis revealed the formation and growth of mechanical defects such as cracks and crazing in the membranes and MEAs. A finite element model was used to estimate stress/strain states of an edge-constrained MEA under rapid RH variations. Damage metrics for accelerated testing and life prediction of PEMFCs are discussed.
The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.
A systematic spectroscopic and computational study was conducted in order to probe the influence of base sequences on stacked (S) versus B-type (B) conformational heterogeneity induced by the major dG adduct derived from the model carcinogen 7-fluoro-2-aminofluorene (FAF). We prepared and characterized eight 12-mer DNA duplexes (-AG*N- series, d[CTTCTAG*NCCTC]; -CG*N- series, d[CTTCTCG*NCCTC]), in which the central guanines (G*) were site-specifically modified with FAF with varying flanking bases (N = G, A, C, T). S/B heterogeneity was examined by CD, UV, and dynamic 19F NMR spectroscopy. All the modified duplexes studied followed a typical dynamic exchange between the S and B conformers in a sequence dependent manner. Specifically, purine bases at the 3'-flanking site promoted the S conformation (G > A > C > T). Simulation analysis showed that the S/B energy barriers were in the 14-16 kcal/mol range. The correlation times (tau = 1/kappa) were found to be in the millisecond range at 20 degrees C. The van der Waals energy force field calculations indicated the importance of the stacking interaction between the carcinogen and neighboring base pairs. Quantum mechanics calculations showed the existence of correlations between the total interaction energies (including electrostatic and solvation effects) and the S/B population ratios. The S/B equilibrium seems to modulate the efficiency of Escherichia coli UvrABC-based nucleotide excision repair in a conformation-specific manner: i.e., greater repair susceptibility for the S over B conformation and for the -AG*N- over the -CG*N- series. The results indicate a novel structure-function relationship, which provides insights into how bulky DNA adducts are accommodated by UvrABC proteins.
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G1, G2 or G3 of NarI sequence (5′-CCG1G2CG3CC-3′). Our 19F-NMR/ICD results showed that FAAF at G1 and G3 prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G2. We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G3 and -G1 duplexes incised more efficiently than the B-type G2 duplex (G3∼G1 > G2). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G2∼G1 > G3, a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.