Recent advancements in deep learning based artificial intelligence have enabled us to analyse complex data in order to provide patients with improved cancer prognosis, which is an important goal in precision health medicine. In this chapter, we would be discussing how deep learning could be applied to clinical data and immunopathological images to accurately determine survival rate prediction for patients. Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) is a relatively new technology for simultaneous detection of multiple specific proteins from a single tissue section. To adopt deep learning, we collected and pre-processed the clinical and mIHC/IF data from a group of patients into three branches of data. These data were subsequently used to train and validate a neural network. The specific process and our recommendations will be further discussed in this chapter. We believe that our work will help the community to better handle their data for AI implementation while improving its performance and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.