Room temperature phosphorescent (RTP) polymers have advantages of strength, toughness, and processing and application flexibility over organic small molecular crystals, but the current RTP polymers are all from rigid plastics and involve chemical linkage and hydrogen and ionic bonds, and thermoplastic RTP elastomer has not been attempted and realized. Moreover, solution-processed films by simply mixing polymers and organic RTP materials can only show weak and single blue RTP. Here it is presented that such elastomer films, once thermomechanically plasticized, can emit bright and long-lived dual RTP. Moreover, they exhibit photo-activation memory effect, variable RTP colors and dynamic deformation RTP response. These results reveal that thermoplasticizing has altered the dispersion states and micro-environment of RTP molecules in matrix, and the cohesion of elastic polymer itself can also greatly restrict non-radiative relaxations to boost both blue mono-molecular and yellow micro-crystalline RTP. This work provides an effective and versatile processing strategy for tuning and enhancing the RTP properties of doped RTP polymers.
The derivatives prepared from commercial (CCZ) and self-synthesized (LCZ) carbazole have the apparent same composition and structure but show very different phosphorescence properties, and CCZ derivative crystals should be treated...
Trace guest doping systems often show better room temperature phosphorescence (RTP), but trace guest doping role and mechanism are not recognized well. Here we cocrystallize commercial (CCZ) and self-made (LCZ) carbazole derivatives and verify that 0.2‰ isomer doping can afford the deserved crystal RTP, but further increasing the isomer amount hardly improves RTP. Isomer doping does not affect crystal stacking modes and intermolecular interactions and is inefficient in monomolecular and amorphous states. LCZ derivatives are intrinsically phosphorescent, but crystallization itself cannot effectively inhibit thermal deactivation, and isomer doping restricts nonradiative relaxation and reduces the energy level of the triplet emissive state via space action at a distance rather than currently described adjacent intermolecular interactions. This work has updated some existing views and represented an important conceptual advance in a fresh understanding of trace guest doping RTP systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.