Ultrasound has been used for antifouling on the surface of medical devices or food utensils, but it is rarely applied in marine anti-biofouling on underwater instruments. To understand whether ultrasonic antifouling is suitable for underwater optical windows, the effect of ultrasonic conditions including frequency, power and duration on the removal of microbiofouling on the surface of polymethyl methacrylate (PMMA), a type of common optical material, was investigated in this study by three-factor and three-level orthogonal experiments. Before and after the ultrasonic treatment, both surface morphology and fouling degree of PMMA samples immersed in Escherichia coli suspension and seawater were characterized and quantified using laser scanning microscope. The results showed that ultrasonic treatment can effectively remove microfouling from the PMMA surface under suitable conditions. Ultrasonic technology has a great potential for the control of microfouling on the marine optical instruments. When compared with power and duration, ultrasonic frequency has a more significant effect on antifouling efficacy of ultrasound. It is useful for PMMA samples exposed to seawater within 2 days to conduct an antifouling treatment under the condition of an ultrasonic frequency of 20 kHz, ultrasonic power of 40 W, and ultrasonic duration of 7 min.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.