Hepatic fibrosis (HF) represents the excessive wound healing where an excess amount of connective tissues is formed within the liver, finally resulting in cirrhosis or even hepatocellular carcinoma (HCC). Therefore, it is significant to discover the efficient agents and components to treat HF, thus restraining the further progression of hepatopathy. Astragalus membranaceus (Fisch.) Bunge [also called Astragali Radix (AR)] is a famous herb in traditional Chinese medicine (TCM), which possesses a variety of biological activities and exerts good therapeutic effects in the treatment of HF. Flavonoids account for the major active ingredients related to the AR pharmacological effects. Total AR flavonoids have been proved to exert inhibitory effects on hepatic fibrosis. This study aimed to further undertake network pharmacology analysis coupled with experimental validation and molecular docking to investigate the effects and mechanism of multiple flavonoid components from AR against liver fibrosis. The results of the network pharmacology analysis showed that the flavonoids from AR exerted their pharmacological effects against liver fibrosis by modulating multiple targets and pathways. The experimental validation data showed that the flavonoids from AR were able to suppress transforming growth factor beta 1 (TGF-β1)-mediated activation of hepatic stellate cells (HSCs) and reduce extracellular matrix deposition in HSC-T6 cells via regulating the nuclear factor kappa B (NF-κB) signal transduction pathway. The results of the molecular docking study further showed that the flavonoids had a strong binding affinity for IκB kinase (IKKβ) after docking into the crystal structure. The above results indicated that, flavonoids possibly exerted the anti-inflammatory effect on treating HF by mediating inflammatory signaling pathways. The potential mechanism of these flavonoids against liver fibrosis may be related to suppression of the NF-κB pathway through effective inhibition of IKKβ. This study not only provides a scientific basis for clarifying the effects and mechanism of AR flavonoids against liver fibrosis but also suggests a novel promising therapeutic strategy for the treatment of liver fibrosis.
Acidification is recognized as the predominant characteristic of the tumor microenvironment (TME) and contributes to tumor progression. However, the mechanism of extracellular acidic TME directly influences intercellular pathologic responses remains unclear. Meanwhile, acidic TME is mainly ascribed to aberrant metabolism of lipids and glucose, but whether and how acidity affects metabolic reprogramming, especially for lipid metabolism, is still unknown. We found that lipid was significantly accumulated in liver cancer cells when exposed to acidic TME. Moreover, proteomic analysis showed that differentially expressed proteins were mainly clustered into fatty acid pathways. Subsequently, we found that acidification increased the expression of SCD1 by activating PI3K/AKT signaling pathway. Interestingly, we found that SCD1 directly bound to PPARα in the acidic TME, which vanished after 2-day reverse incubation in pH 7.4 medium, implying extracellular acidosis might influence intercellular function by mediating the binding affinity between SCD1 and PPARα under different pH gradients. In summary, our data revealed that acidosis could significantly trigger fatty acid synthesis to promote liver tumorigenesis by upregulating SCD1 in a PI3K/AKT activation dependent manner and simultaneously promote SCD1 binding to PPARα. Our study not only provides direct mechanistic evidence to support the vital role of acidosis in lipid metabolic reprogramming, but also provides novel insights for determining the binding affinity of functional proteins as a molecular mechanism to better understand the role of the acidic TME in tumor development. Implications: The acidic TME contributes to lipid accumulation in liver cancer by activating the PI3K/AKT signaling pathway and promoting SCD1–PPARα binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.