The coronavirus disease 2019 (COVID-19) pandemic is currently the most critical challenge in public health. An understanding of the factors that affect severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection will help fight the COVID-19 pandemic. This study sought to investigate the association between SARS-CoV-2 infection and blood type distribution. The big data provided by the World Health Organization (WHO) and Johns Hopkins University were used to assess the dynamics of the COVID-19 epidemic. The infection data in the early phase of the pandemic from six countries in each of six geographic zones divided according to the WHO were used, representing approximately 5.4 billion people around the globe. We calculated the infection growth factor, doubling times of infection and death cases, reproductive number and infection and death cases in relation to the blood type distribution. The growth factor of infection and death cases significantly and positively correlated with the proportion of the population with blood type A and negatively correlated with the proportion of the population with blood type B. Compared with the lower blood type A population (<30%), the higher blood type A population (⩾30%) showed more infection and death cases, higher growth factors and shorter case doubling times for infections and deaths and thus higher epidemic dynamics. Thus, an association exists between SARS-CoV-2 and the ABO blood group distribution, which might be useful for fighting the COVID-19 pandemic.
Background. Acute coronary syndrome (ACS) causes pathophysiological changes in exercise capacity, N-terminal part of pro-brain natriuretic peptide (NT-proBNP), and adiponectin that impact the course of coronary artery disease and clinical outcomes after cardiac rehabilitation (CR). However, the serial changes and the relationship between the changes in these parameters for a prolonged term remain uninvestigated. Methods. Eighty-one patients with ACS underwent a three- or four-week CR program after acute care and were followed up for 12 months. Exercise capacity on a cycle ergometer and blood levels of NT-proBNP and adiponectin were determined before and after CR as well as at the 12-month follow-up. Results. Exercise capacity increased from 100 watts (in median) before CR to 138 watts after CR and 150 watts at 12 months. The NT-proBNP level (526 pg/ml before CR) remained almost unchanged after CR (557 pg/ml) and then decreased at 12 months (173 pg/ml). The adiponectin level (14.5 µg/ml before CR) increased after CR (16.0 µg/ml) and at 12 months (17.2 µg/ml). There was no significant correlation among the changes in these parameters at each observation time point. Conclusion. During the observation period from before CR to the 12-month follow-up, exercise capacity, NT-proBNP, and adiponectin underwent significant changes; however, these changes were independent from each other and not correlated linearly, and they provide complementary information in clinical practice. Thus, all these parameters should be included and determined at different time points for a prolonged period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.