To investigate the effect of selective laser melting (SLM) energy densities on the performance of porous 316L stainless steel bone scaffolds, the porous bone scaffolds with a face-centered cubic (FCC) structure were prepared using SLM technology, and a comprehensive study combining finite element analysis (FEA) and experiments was conducted on the SLM-formed 316L porous bone scaffolds. The mechanism of how various energy densities affect bone scaffolds were identified, and the effects of different energy densities on the primary dendrite spacing, grain orientation, residual stress, and transient melt pool variation in the scaffolds were discussed and summarized. It was found that the change in the energy densities had a more serious effect on the primary dendrite spacing, with the primary dendrite spacing increasing from 320 to 501 nm when the energy densities were increased from 41.7 to 111.1 J/mm3. In addition, analysis of the residual stress in the formed scaffolds showed that when an energy density of 41.7 J/mm3 was chosen for construction, the internal residual stress in the scaffolds reached a minimum value of 195.78 MPa, a reduction of approximately 36.6% compared to that of 111.1 J/mm3 for the porous scaffold. For the other properties of the scaffolds, the choice of low energy densities for the construction of FCC-structured porous bone scaffolds allowed for a maximum 10% reduction in the controlled deformation and a maximum 17% increase in the compressive properties. At the same time, it was found that the analysis results of the SLM-forming process by the FEA method were consistent with the experimental results. The main innovation of this paper is the proposal of the best construction parameters for porous bone scaffolds with an FCC structure formed by SLM and verification of the rationality of the best parameters through macro and micro experimental analysis, which guides the construction of porous bone scaffolds with an FCC structure formed by additive manufacturing. In addition, this study used finite element simulation to analyze the SLM process. This provides early prediction, optimization, and improvement for SLM-forming FCC porous bone scaffolds. The most important thing is that FEA can be used to more rapidly and economically analyze SLM. In the future, FEA can be used to provide a reference for porous bone scaffolds with different structures, different construction energy densities, different materials, and additive manufacturing in other industries.
In the implantation of porous bone scaffolds, good mechanical properties of the scaffold are a prerequisite for the long-term functionality of the implanted scaffolds, which varies according to the structure and the forming process. In this study, the influence of the forming parameters and structure of the Selective Laser Melting (SLM) process on the mechanical properties of 316L stainless steel bone scaffolds was investigated using finite element simulation combined with experimental methods. The mechanism of the influence of the process parameters and structure on the mechanical properties of bone scaffolds was summarized using static compression finite element numerical simulations, compression experiments, hydrodynamic simulations, forming numerical simulations and SLM forming experiments. The results show that the magnitude of residual stress and the distribution of defects under different process parameters had a strong influence on the microstructure and properties of the scaffold, and the residual stress of the Body-Centered Cube (BCC) structure formed at an energy density of 41.7 J/mm3 was significantly reduced, with less surface spheroidization and fewer cracks on the melt pool surface. The smallest grain size of 321 nm was obtained at an energy density of 77.4 J/mm3, while in terms of mechanical properties, the optimization of the structure resulted in an 8.3% increase in yield strength and a reduction in stress concentration. The predictions of stress, deformation, and forming quality during construction with different process parameters, achieved using finite element analysis, are basically in agreement with the experimental results, indicating that the best process parameters for forming BCC structural supports were determined by using finite element simulation combined with experiments; moreover, the distribution and evolution of residual stresses and defects under different process parameters for constructing BCC structures were obtained.
The effects of compound plasticizer urea/caprolactam (UC) on the diffusion behavior of water in mixtures with poly(vinyl alcohol) (PVA) were studied using a Molecular Dynamics (MD) simulation method. Five simulation models of PVA composites with different plasticizer contents were constructed to investigate the variation of the intermolecular interaction as well as the diffusion behavior of water molecules. Results showed that the predominant interaction between the functional groups of UC and PVA consisted of hydrogen bonds. As the plasticizer content increased, diffusion coefficients of water in PVA systems increased due to the comparably weak diffusion resistance. It was also found that the rotation of the PVA chains and the small molecules became faster with increasing UC content, and the relaxation time became shorter.
The effect of different WC grain size additions on the microstructure and grain distribution of Ni–Co coarse crystalline cemented carbide was studied. And then the effect of grain distribution on the mechanical properties of cemented carbide was discussed. The effect of WC grain size on the grain size and coherency of cemented carbide was analyzed by microstructure. And the distribution of grains in the microstructure was investigated by the truncation method. The addition of fine (1.1–1.4 μm), medium (2.3–2.7 μm), and coarse WC (5.6–6.0 μm) particles can increase the nucleation rate of WC grains in the bonded phase. And the higher grain growth driving force can produce the theoretical limitation of nucleation and inhibit the coarsening of WC grains to a certain extent. The WC grain size has an insignificant effect on the frequency of the occurrence of super‐coarse grains in coarse crystalline cemented carbide. The average grain size and super coarse grains in microstructure gradually decrease, which promotes the improvement of transverse rupture strength. The increase of the adjacent degree and the decrease of the mean free path reduce which is beneficial to the improvement of the corrosion resistance of the alloy. The best overall performance of the alloy is achieved when fine‐grained WC is added.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.