The metabolism of the anti-inflammatory drug Celecoxib in rabbits was characterized using liquid chromatography (LC)/tandem mass spectrometry (MS/MS) with precursor ion and constant neutral loss scans followed by product ion scans. After separation by on-line liquid chromatography, the crude urine samples and plasma and fecal extracts were analyzed with turbo-ionspray ionization in negative ion mode using a precursor ion scan of m/z 69 (CF(3)) and a neutral loss scan of 176 (dehydroglucuronic acid). The subsequent product ion scans of the [M - H] ions of these metabolites yielded the identification of three phase I and four phase II metabolites. The phase I metabolites had hydroxylations at the methyl group or on the phenyl ring of Celecoxib, and the subsequent oxidation product of the hydroxymethyl metabolite formed the carboxylic acid metabolite. The phase II metabolites included four positional isomers of acyl glucuronide conjugates of the carboxylic acid metabolite. These positional isomers were caused by the alkaline pH of the rabbit urine and were not found in rabbit plasma. The chemical structures of the metabolites were characterized by interpretation of their product ion spectra and comparison of their LC retention times and the product ion spectra with those of the authentic synthesized standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.