Background: Microglial hyperactivation driven by SphK1/S1P signaling and consequent inflammatory mediator production is a key driver of cerebral ischemia-reperfusion injury (CIRI). While SphK1 reportedly controls autophagy and microglial activation, it remains uncertain as to whether it is similarly able to regulate damage mediated by CIRI-activated microglia. Methods: In the present study, we utilized both an in vitro oxygen-glucose deprivation reperfusion (OGDR) model and an in vivo rat model of focal CIRI to test whether Sphk1 and autophagy is expressed in microglia. Western blot analysis was used to estimate the autophagy protein level (LC3 and SQSTM ) at different time points after OGDR. To detect cytokine secretion in microglial supernatants in response to OGDR, we measured the concentration of IL-1β, IL-6 and TNF-α in the culture supernatants using an enzyme-linked immunosorbent assay (ELISA). To evaluate whether microglia subjected to OGDR exhibited neuronal injury, we used a commercially available terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) kit and flow cytometry to detect apoptotic neurons.Results: We determined that in the context of CIRI, microglia upregulated SphK1 and induced autophagy, while inhibiting these changes by lentivirus targeting SphK1 significantly decreased expression of autophagy . Moreover, we determined that autophagic body formation was enhanced in cerebral tissues following I/R. We also explored the impact of SphK1-induced autophagy on microglial inflammatory cytokine production and associated neuronal apoptosis using an in vitro OGDR model system. At a mechanistic level, we found that SphK1 promotes autophagy via the tumor necrosis factor receptor-associated factor 2 (TRAF2) pathway. Conclusion: These results reveal a novel mechanism whereby SphK1-induced autophagy in microglia can contribute to the pathogenesis of CIRI, potentially highlighting novel avenues for future therapeutic intervention in IS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.