Reflection loss on the optical component surface is detrimental to performance. Several researchers have discovered that the eyes of moths are covered with micro- and nanostructured films that reduce broadband and wide-angle light reflection. This research proposes a new type of moth-eye subwavelength structure with a waist, which is equivalent to a gradient refractive index film layer with high–low–high hyperbolic-type fill factor distribution. The diffraction order characteristics of a moth-eye subwavelength structure are first analyzed using a rigorous coupled wave analysis. The moth-eye structural parameters are optimized within the spectral range of 2–5 μm using the finite-difference time-domain method. The experimental fabrication of the moth-eye structure with a waist array upon a silicon substrate is demonstrated by using three-beam laser interferometric lithography and an inductively coupled plasma process. The experimental and simulation results show good agreement. The experimental results show that the reflectivity of the moth-eye structure with a waist is less than 1.3% when the incidence angle is less than 30°, and less than 4% when the incidence angle is less than 60°. This research can guide the development of AR broadband optical components and wide-angle applications.
Using three-dimensional (3D) coherency vector (9 × 1), we develop a new 3D polarization algebra to calculate the polarization properties of all polarization sensitive optical systems, especially when the incident optical field is partially polarized or un-polarized. The polarization properties of a high numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) are analyzed based on the proposed 3D polarization algebra. Correspondingly, the polarization simulation of this high NA optical system is performed by the commercial software VirtualLAB Fusion. By comparing the theoretical calculations with polarization simulations, a perfect matching relation is obtained, which demonstrates that this 3D polarization algebra is valid to quantify the 3D polarization properties for all polarization sensitive optical systems.
The output polarization states of corner cubes (for both uncoated and metal-coated surfaces) with an input beam of arbitrary polarization state and of arbitrary tilt angle to the cube have been analyzed by using the three-dimensional polarization ray-tracing matrix method. The diattenuation and retardance of the corner-cube retroreflector (CCR) for all six different ray paths are calculated, and the relationships to the tilt angle and the tilt orientation angle are shown. When the tilt angle is large, hollow metal-coated CCR is more appropriate than solid metal-coated CCR for the case that the polarization states of output beam should be controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.