Circadian rhythm plays an important role in the regulation of digestive system. The human circadian rhythm is controlled by at least nine circadian genes. The aims of this study are to understand the expression of the circadian genes between hepatocellular carcinoma tissues and nontumor tissues, and to explore the possible mechanism(s) contributing to the difference. We analyzed differential expression of the 9 circadian genes in 46 hepatocellular carcinoma and paired noncancerous tissues by real-time quantitative RT-PCR and immunohistochemical detection. We also tested the possible regulatory mechanism(s) by direct sequencing and methylation PCR analysis. Our results showed that decreased expression levels of PER1, PER2, PER3, CRY2, and TIM in hepatocellular carcinomas were observed. Decreased-expression of these genes was not caused by genetic mutations, but by several factors, such as promoter methylation, overexpression of EZH2 or other factors. The down expression of more circadian genes may result in disturbance of cell cycle, and it is correlated with the tumor size. Downregulation of circadian genes results in disturbance of circadian rhythm in hepatocellular carcinoma which may disrupt the control of the central pacemaker and benefit selective survival of cancerous cells and promote carcinogenesis.
BackgroundCdk1 (cyclin-dependent kinase 1) is critical regulator of the G2-M checkpoint. Cyclin-dependent kinase pathways are considered possible targets for cancer treatment; however, the prognostic role of Cdk1 in colorectal cancer is still controversial. Therefore, we attempted to determine the impact of Cdk1 on the clinical outcome of colorectal cancer patients to further identify its role in colorectal cancer.MethodsCdk1 immunoreactivity was analyzed by immunohistochemistry (IHC) in 164 cancer specimens from primary colorectal cancer patients. The medium follow-up time after surgery was 3.7 years (range: 0.01 to 13.10 years). The prognostic value of Cdk1 on overall survival was determined by Kaplan-Meier analysis and Cox proportional hazard models.ResultsAll samples displayed detectable Cdk1 expression with predominant location in the cytoplasm and nucleus. A high Cdk1 nuclear/cytoplasmic (N/C) expression ratio was correlated with poor overall survival (5-year survival rate: 26.3% vs 46.9%, N/C ratio ≥1.5 vs N/C ratio <1.5, log-rank p = 0.027). Accordingly, a Cdk1 N/C expression ratio ≥1.5 was identified as an independent risk factor by multivariate analysis (hazard ratio = 1.712, P = 0.039).ConclusionsWe suggest that Cdk1 N/C expression ratio determined by IHC staining could be an independent prognostic marker for colorectal cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-951) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.