PD-L1 has been widely demonstrated to contribute to failed antitumor immunity. Blockade of PD-L1 with monoclonal antibody could modulate the tumor immune environment to augment immunotherapy. PD-L1 expression is also detected in several types of cancer and is associated with poor prognosis. However, the prognostic role of PD-L1 in oral squamous cell carcinoma (OSCC) is still controversial. Our aim was to determine the role of PD-L1 in the prognosis of OSCC patients to identify its potential therapeutic relevance. PD-L1 immunoreactivity was analyzed by immunohistochemistry in 305 cancer specimens from primary OSCC patients. The medium follow-up time after surgery was 3.8 years (range from 0.1 to 11.1 years). The prognostic value of PD-L1 on overall survival was determined by Kaplan-Meier analysis and Cox proportional hazard models. Higher PD-L1 expression is more likely in tumor tissues of female than male OSCC patients (P = 0.0062). Patients with distant metastasis also had high PD-L1 expression (P = 0.0103). Multivariate analysis identified high PD-L1 expression as an independent risk factor in males and smokers (males: hazard ratio = 1.556, P = 0.0077; smokers: hazard ratio = 2.058, P = 0.0004). We suggest that PD-L1 expression, determined by IHC staining, could be an independent prognostic marker for OSCC patients who are male or who have a smoking habit.
Oxaliplatin (OXA), is a third generation platinum drug used as first-line chemotherapy in colorectal cancer (CRC). Cancer cells acquires resistance to anti-cancer drug and develops resistance. ATP-binding cassette (ABC) drug transporter ABCG2, one of multidrug resistance (MDR) protein which can effectively discharge a wide spectrum of chemotherapeutic agents out of cancer cells and subsequently reduce the intracellular concentration of these drugs. Role of ABCG2 and plausible molecular signaling pathways involved in Oxaliplatin-Resistant (OXA-R) colon cancer cells was evaluated in the present study. OXA resistant LoVo cells was developed by exposing the colon cells to OXA in a dose-dependent manner. Development of multi drug resistance in OXA-R cells was confirmed by exposing the resistance cells to oxaliplatin, 5-FU, and doxorubicin. OXA treatment resulted in G2 phase arrest in parental LoVo cells, which was overcome by OXA-R LoVo cells. mRNA and protein expression of ABCG2 and phosphorylation of NF-κB was significantly higher in OXA-R than parental cells. Levels of ER stress markers were downregulated in OXA-R than parental cells. OXA-R LoVo cells exposed to NF-κB inhibitor QNZ effectively reduced the ABCG2 and p-NF-κB expression and increased ER stress marker expression. On other hand, invasion and migratory effect of OXA-R cells were found to be decreased, when compared to parental cells. Metastasis marker proteins also downregulated in OXA-R cells. ABCG2 inhibitor verapamil, downregulate ABCG2, induce ER stress markers and induces apoptosis. In vivo studies in nude mice also confirms the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.