The Dicke model describes N qubits (or two-level atoms) homogenously coupled to a bosonic mode. Here we examine an open-system realization of the Dicke model, which contains critical and chaotic behaviour. In particular, we extend this model to include an additional open transport qubit (TQ) (coupled to the bosonic mode) for passive and active measurements. We illustrate how the scaling (in the number of qubits N) of the superradiant phase transition can be observed in both current and current-noise measurements through the transport qubit. Using a master equation, we also investigate how the phase transition is affected by the back-action from the transport qubit and losses in the cavity. In addition, we show that the non-integrable quantum chaotic character of the Dicke model is retained in an open-system environment. We propose how all of these effects could been seen in a circuit QED system formed from an array of superconducting qubits, or an atom chip, coupled to a quantized resonant cavity (e.g., a microwave transmission line).Comment: 7 page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.