This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
Pleural effusions in the neonatal stage may result from chylothorax, hydrops fetalis, extravasation of percutaneously inserted central venous catheter, parapneumonic effusion, congestive heart failure, or other less frequently occurring conditions. Diagnostic chest tap is required for subsequent management. Good outcome is the rule except in hydrops fetalis, which carries high mortality rate.
Silica, sharing the same tetrahedral order and many structural, thermodynamic and dynamic anomalies with water, has been speculated to have a density increase upon melting similar to water. In this work, an increase in density upon melting cristobalite silica and a shallow density maximum followed by a density minimum during cooling of silica liquid are observed in classical molecular dynamics simulations. The density maximum gradually diminishes with the increase in alkali size/content in alkali silicate glasses. The structural origin of the anomalous density maximum in silica is revealed by detailed structural analysis. During the cooling process, a range of rings with different sizes form in liquid silica, with 6-member rings being the most dominant, which cause the silica network to open up and compensate the regular volume shrinkage upon cooling. These two competing factors lead to a density maximum, but to a less extent than that observed in melting of cristobalite silica. With the increase in modifier size/content in the alkali silicate glasses, the connectivity of silica network gradually breaks down; the population of 6-member rings decrease with the increase in smaller or larger rings, therefore the density maximum becomes less obvious and eventually disappears.
K E Y W O R D Satomistic simulation, density maximum, silica, silicates
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.