Elderly individuals with abdominal obesity and low skeletal muscle mass have higher all-cause and cardiovascular mortality risk.
Vitamin D deficiency has been epidemiologically linked to Alzheimer's disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non‐genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D‐sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aβ deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non‐genomic VDR/p53 complex in AD brains. Consistently, our population‐based longitudinal study also showed that dementia‐free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre‐existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.
Background Few longitudinal studies have investigated the association between foods/dietary pattern and mortality risk in the Asian population. We investigated the prospective association between foods/dietary pattern and risk of death among ethnic Chinese adults in Taiwan. Methods The study population included 2475 young and middle-aged adults (aged 18–65 years at baseline) who completed the questionnaires and physical examinations in the Nutrition and Health Survey in Taiwan from 1993 to 1996. A food frequency questionnaire was administered to assess food consumption habits in a face-to-face interview. With survey data linked to the Taiwanese Death Registry, Cox proportional hazard model was used to identify the foods associated with all-cause mortality(followed until 2012), which were then tallied to calculate a dietary pattern score called Taiwanese Eating Approach(TEA) score. The TEA scores were then associated with various kinds of mortality outcomes. In addition, data from 431 elders (aged≥65 yrs) with 288 death endpoints were used to conduct a sensitivity analysis. Results A total of 385(15.6%) participants died (111 cardiovascular related deaths and 122 cancer related deaths) during the 17.8-year follow-up period(41274 person-years). Twelve foods (9 inverse [vegetables/fish/milk/tea](+1) and 3 positive[fatty meats/fermented vegetables/sweet drinks](-1)) were significantly associated with all-cause mortality risk. All adults were grouped by their cumulative food score into three diet groups: poor diet(29.3% of all subjects), average diet(44.0%), and healthy diet(26.70%). The better the diet, the lower the total, cardiovascular, and other cause mortality outcomes (trend-p < .001). The hazard ratio for the healthy diet was 0.64 (95% confidence interval:0.47–0.87) for total mortality, and 0.52(0.28–0.95) for cardiovascular death, compared with the poor diet in the multivariable models. This phenomenon was also seen in older adults for all-cause, cancer, and other cause mortalities. Conclusion Consuming a healthy Taiwanese Eating Approach (TEA) diet is negatively associated with all-cause, cardiovascular, and other-cause mortalities in Taiwan.
Observational epidemiological studies have associated vitamin D deficiency with Alzheimer's disease (AD). However, whether vitamin D deficiency would result in some impacts on the vitamin D binding receptor (VDR) remains to be characterized in AD. Vitamin D helps maintain adult brain health genomically through binding with and activating a VDR/retinoid X receptor (RXR) transcriptional complex. Thus, we investigated the role of VDR in AD using postmortem human brains, APP/PS1 mice, and cell cultures. Intriguingly, although vitamin D was decreased in AD patients and mice, hippocampal VDR levels were inversely increased. The abnormally increased levels of VDR were found to be colocalized with Aβ plaques, gliosis and autophagosomes, implicating a non‐genomic activation of VDR in AD pathogenesis. Mechanistic investigation revealed that Aβ upregulated VDR without its canonical ligand vitamin D and switched its heterodimer binding‐partner from RXR to p53. The VDR/p53 complex localized mostly in the cytosol, increased neuronal autophagy and apoptosis. Chemically inhibiting p53 switched VDR back to RXR, reversing amyloidosis and cognitive impairment in AD mice. These results suggest a non‐genomic rewiring of VDR to p53 is key for the progression of AD, and thus VDR/p53 pathway might be targeted to treat people with AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.