A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5-10 nm range and critical micellar concentration (CMC) in the 0.034-0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number ( N) and the micellar radius ( R) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number ( n) as the number of monomers between the junction and the ionic monomer, N exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, R exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, R was found to scale with N in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
A series of ABC triblock copolypeptoids [i.e., poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD)] with well-defined structure and varying composition have been synthesized by sequential primary amine-initiated ring-opening polymerization of the corresponding N-substituted N-carboxyanhydride monomers (Al-NCA, Me-NCA, and De-NCA). The ABC block copolypeptoids undergo sol-to-gel transitions with increasing temperature in water and biological media at low concentrations (2.5–10 wt %). The sol–gel transition is rapid and fully reversible with a narrow transition window, evidenced by the rheological measurements. The gelation temperature (Tgel) and mechanical stiffness of the hydrogels are highly tunable: Tgel in the 26.2–60.0 °C range, the storage modulus (G′) and Young’s modulus (E) in the 0.2–780 Pa and 0.5–2346 Pa range, respectively, at the physiological temperature (37 °C) can be readily accessed by controlling the block copolypeptoid composition and the polymer solution concentration. The hydrogel is injectable through a 24 gauge syringe needle and maintains their shape upon in contact with surfaces or water baths that are kept above the sol–gel transition temperature. The hydrogels exhibit minimal cytotoxicity toward human adipose derived stem cells (hASCs), evidenced from both alamarBlue and PicoGreen assays. Furthermore, quantitative PCR analysis revealed significant up-regulation of the Col2a1 gene and down-regulation of ANGPT1 gene, suggesting that the hydrogel exhibit biological activity in inducing chondrogenesis of hASCs. It was also demonstrated that the hydrogel can be used to quantitatively encapsulate water-soluble enzymes (e.g., horseradish peroxidase) by manipulating the sol–gel transition. The enzymatic activity of HRP remain unperturbed after encapsulation at 37 °C for up to 7 d, suggesting that the hydrogel does not adversely affect the enzyme structure and thereby the enzymatic activity. These results suggest that the polypeptoid hydrogel a promising synthetic platform for tissue engineering or protein storage applications.
We report the ability of hydrophobically modified polypeptoids (HMPs), which are amphiphilic pseudopeptidic macromolecules, to connect across lipid bilayers and thus form layered structures on liposomes. The HMPs are obtained by attaching hydrophobic decyl groups at random points along the polypeptoid backbone. Although native polypeptoids (with no hydrophobes) have no effect on liposomal structure, the HMPs remodel the unilamellar liposomes into structures with comparable diameters but with multiple concentric bilayers. The transition from single-bilayer to multiple-bilayer structures is revealed by small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). The spacing between bilayers is found to be relatively uniform at ∼6.7 nm. We suggest that the amphiphilic nature of the HMPs explains the formation of multibilayered liposomes; i.e., the HMPs insert their hydrophobic tails into adjacent bilayers and thereby serve as the connective glue between bilayers. At higher HMP concentrations, the liposomes are entirely disrupted into much smaller micellelike structures through extensive hydrophobe insertion. Interestingly, these small structures can reattach to fresh unilamellar liposomes and self-assemble to form new two-bilayer liposomes. The two-bilayer liposomes in our study are reminiscent of two-bilayer organelles such as the nucleus in eukaryotic cells. The observations have significance in designing new nanoscale drug delivery carriers with multiple drugs on separate lipid bilayers and extending liposome circulation times with entirely biocompatible materials.
High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2–20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW −1 . The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10 −2 is realized and the optimal noise equivalent power is 29.1 pWHz −1/2 . The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.