Summary
The naked mole-rat (NMR, Heterocephalus glaber) is a long-lived mammal in which spontaneous cancer has not been observed. In order to investigate possible mechanisms for cancer resistance in this species, we studied the properties of skin fibroblasts from the NMR following transduction with oncogenes that cause cells of other mammalian species to form malignant tumors. NMR fibroblasts were transduced with a retrovirus encoding SV40 large T antigen and oncogenic RasG12V. Following transplantation of transduced cells into immunodeficient mice, cells rapidly entered crisis, as evidenced by the presence of anaphase bridges, giant cells with enlarged nuclei, multinucleated cells, and cells with large number of chromosomes or abnormal chromatin material. In contrast, similarly transduced mouse and rat fibroblasts formed tumors that grew rapidly without crisis. Crisis was also observed after >40 population doublings in SV40 TAg/Ras-expressing NMR cells in culture. Crisis in culture was prevented by additional infection of the cells with a retrovirus encoding hTERT (telomerase reverse transcriptase). SV40 TAg/Ras/hTERT-expressing NMR cells formed tumors that grew rapidly in immunodeficient mice without evidence of crisis. Crisis could also be induced in SV40 TAg/Ras-expressing NMR cells by loss of anchorage, but after hTERT transduction cells were able to proliferate normally following loss of anchorage. Thus, rapid crisis is a response of oncogene-expressing NMR cells to growth in an in vivo environment, which requires anchorage independence, and hTERT permits cells to avoid crisis and to achieve malignant tumor growth. The unique reaction of NMR cells to oncogene expression may form part of the cancer resistance of this species.
Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine. For the application of iPSCs to forms of autologous cell therapy, suitable animal models are required. Among species that could potentially be used for this purpose, nonhuman primates are particularly important, and among these the marmoset offers significant advantages. In order to demonstrate the feasibility of the application of iPSC technology to this species, here we derived lines of marmoset iPSCs. Using retroviral transduction with human Oct4, Sox2, Klf4 and c-Myc, we derived clones that fulfil critical criteria for successful reprogramming: they exhibit typical iPSC morphology; they are alkaline phosphatase positive; they express high levels of NANOG, OCT4 and SOX2 mRNAs, while the corresponding vector genes are silenced; they are immunoreactive for Oct4, TRA-1-81 and SSEA-4; and when implanted into immunodeficient mice they produce teratomas that have derivatives of all three germ layers (endoderm, α-fetoprotein; ectoderm, βIII-tubulin; mesoderm, smooth muscle actin). Starting with a population of 4 × 105 newborn marmoset skin fibroblasts, we obtained ∼100 colonies with iPSC-like morphology. Of these, 30 were expanded sufficiently to be cryopreserved, and of those 8 were characterized in more detail. These experiments provide proof of principle that iPSC technology can be adapted for use in the marmoset, as a future model of autologous cell therapy.
Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.