Obtaining high-precision, long-term sequences of vegetation water content (VWC) is of great significance for assessing surface vegetation growth, soil moisture, and fire risk. In recent years, the global navigation satellite system-interferometric reflection (GNSS-IR) has become a new type of remote sensing technology with low cost, all-weather capability, and a high temporal resolution. It has been widely used in the fields of snow depth, sea level, soil moisture content, and vegetation water content. The normalized microwave reflectance index (NMRI) based on GNSS-IR technology has been proven to be effective in monitoring changes in VWC. This paper considers the advantages and disadvantages of remote sensing technology and GNSS-IR technology in estimating VWC. A pointsurface fusion method of GNSS-IR and MODIS data based on the GA-BP neural network is proposed to improve the accuracy of VWC estimation. The vegetation index products (NDVI, GPP, LAI) and the NMRI that unified the temporal and spatial resolution were used as the input and output data of the training model, and the GA-BP neural network was used for training and modeling. Finally, a spatially continuous NMRI product was generated. Taking a particular area of the United States as a research object, experiments show that (1) a neural network can realize the effective fusion of GNSS-IR and MODIS products. By comparing the GA-BP neural network, BP neural network, and multiple linear regression (MLR), the three models fusion effect. The results show that the GA-BP neural network has the best modeling effect, and the r and RMSE between the model estimation result and the reference value are 0.778 and 0.0332, respectively; this network is followed by the BP neural network, in which the r and RMSE are 0.746 and 0.0465, respectively. MLR has the poorest effect, with r and RMSE values of 0.500 and 0.0516, respectively. (2) The spatiotemporal variation in the 16 days/500 m resolution NMRI product obtained by GA-BP neural network fusion is consistent with that in the experimental area. Through the testing of GNSS stations that did not participate in the modeling, the r between the estimated value of the NMRI and the reference value is greater than 0.87, and the RMSE is less than 0.049. Therefore, the method proposed in this paper is optional and effective. The spatially continuous NMRI products obtained by fusion can reflect the changes in VWC in the experimental area more intuitively.
Abstract:In this paper, a self-diagnosis system of observer fault with linear and non-linear combination is studied in light of the unstable performance of the automatic monitoring system and the drift of the measured value. The system makes a prediction step ahead of time, compares it with the online measured value, and makes a logical judgment based on the residual error to achieve the purpose of real-time diagnosis of the automatic monitoring system. We developed a novel combined algorithm for dam deformation prediction using two traditional models and one optimization model. The developed algorithm combines two sub-algorithms: the gray model (GM) (1, 1) and the back-propagation neural network (BPNN) model. The GM (1, 1) addresses the effects of the automated monitoring of data from unstable situations; the BPNN model addresses the internal non-linear regularity of the dam displacement. The connection weights and thresholds of the BPNN model can be optimized and determined via the genetic algorithm (GA), which can decrease the uncertainties within the model predictions and improve the prediction accuracy. The results show that the fault self-diagnosis system based on the GM-GA-BP combined model can realize online fault diagnosis better than the traditional single models.
The frequent occurrence and spread of wildfires pose a serious threat to the ecological environment and urban development. Therefore, assessing regional wildfire susceptibility is crucial for the early prevention of wildfires and formulation of disaster management decisions. However, current research on wildfire susceptibility primarily focuses on improving the accuracy of models, while lacking in-depth study of the causes and mechanisms of wildfires, as well as the impact and losses they cause to the ecological environment and urban development. This situation not only increases the uncertainty of model predictions but also greatly reduces the specificity and practical significance of the models. We propose a comprehensive evaluation framework to analyze the spatial distribution of wildfire susceptibility and the effects of influencing factors, while assessing the risks of wildfire damage to the local ecological environment and urban development. In this study, we used wildfire information from the period 2013–2022 and data from 17 susceptibility factors in the city of Guilin as the basis, and utilized eight machine learning algorithms, namely logistic regression (LR), artificial neural network (ANN), K-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), gradient boosting decision tree (GBDT), light gradient boosting machine (LGBM), and eXtreme gradient boosting (XGBoost), to assess wildfire susceptibility. By evaluating multiple indicators, we obtained the optimal model and used the Shapley Additive Explanations (SHAP) method to explain the effects of the factors and the decision-making mechanism of the model. In addition, we collected and calculated corresponding indicators, with the Remote Sensing Ecological Index (RSEI) representing ecological vulnerability and the Night-Time Lights Index (NTLI) representing urban development vulnerability. The coupling results of the two represent the comprehensive vulnerability of the ecology and city. Finally, by integrating wildfire susceptibility and vulnerability information, we assessed the risk of wildfire disasters in Guilin to reveal the overall distribution characteristics of wildfire disaster risk in Guilin. The results show that the AUC values of the eight models range from 0.809 to 0.927, with accuracy values ranging from 0.735 to 0.863 and RMSE values ranging from 0.327 to 0.423. Taking into account all the performance indicators, the XGBoost model provides the best results, with AUC, accuracy, and RMSE values of 0.927, 0.863, and 0.327, respectively. This indicates that the XGBoost model has the best predictive performance. The high-susceptibility areas are located in the central, northeast, south, and southwest regions of the study area. The factors of temperature, soil type, land use, distance to roads, and slope have the most significant impact on wildfire susceptibility. Based on the results of the ecological vulnerability and urban development vulnerability assessments, potential wildfire risk areas can be identified and assessed comprehensively and reasonably. The research results of this article not only can improve the specificity and practical significance of wildfire prediction models but also provide important reference for the prevention and response of wildfires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.